
MATLAB®

Data Import and Export

R2014a



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Data Import and Export

© COPYRIGHT 2009–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
September 2009 Online only New for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online only Revised for MATLAB 8.3 (Release 2014a)





Contents

File Opening, Loading, and Saving

1
Supported File Formats for Import and Export . . . . . . . 1-2

Methods for Importing Data . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Tools that Import Multiple File Formats . . . . . . . . . . . . . . . 1-7
Importing Specific File Formats . . . . . . . . . . . . . . . . . . . . . . 1-8
Importing Data with Low-Level I/O . . . . . . . . . . . . . . . . . . . 1-8

Import Images, Audio, and Video Interactively . . . . . . . 1-9
Viewing the Contents of a File . . . . . . . . . . . . . . . . . . . . . . . 1-9
Specifying Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Generating Reusable MATLAB Code . . . . . . . . . . . . . . . . . 1-11

Import or Export a Sequence of Files . . . . . . . . . . . . . . . . 1-13

View the Contents of a MAT-File . . . . . . . . . . . . . . . . . . . . 1-14

Load Parts of Variables from MAT-Files . . . . . . . . . . . . . 1-15
Load Using the matfile Function . . . . . . . . . . . . . . . . . . . . . 1-15
Load from Variables with Unknown Names . . . . . . . . . . . . 1-16
Avoid Repeated File Access . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Avoid Inadvertently Loading Entire Variables . . . . . . . . . . 1-18
Partial Loading Requires Version 7.3 MAT-Files . . . . . . . . 1-18

Save Parts of Variables to MAT-Files . . . . . . . . . . . . . . . . 1-20
Save Using the matfile Function . . . . . . . . . . . . . . . . . . . . . 1-20
Partial Saving Requires Version 7.3 MAT-Files . . . . . . . . . 1-22

Save Structure Fields as Separate Variables . . . . . . . . . 1-23

MAT-File Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Default Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Overriding the Default MAT-File Version . . . . . . . . . . . . . . 1-24

v



Speeding Up Save and Load Operations . . . . . . . . . . . . . . . 1-25

File Size Increases Unexpectedly When Growing
Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27

Loading Variables within a Function . . . . . . . . . . . . . . . . 1-29

Create Temporary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30

Text Files

2
Ways to Import Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Select Text File Data Using Import Tool . . . . . . . . . . . . . 2-4
Select Data Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Import Data from Multiple Text Files . . . . . . . . . . . . . . . . . 2-7

Import Dates and Times from Text Files . . . . . . . . . . . . . 2-9

Import Numeric Data from Text Files . . . . . . . . . . . . . . . 2-10
Import Comma-Separated Data . . . . . . . . . . . . . . . . . . . . . . 2-10
Import Delimited Numeric Data . . . . . . . . . . . . . . . . . . . . . 2-11

Import Mixed Text and Numeric Data from Text
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Read File with Column Names . . . . . . . . . . . . . . . . . . . . . . . 2-13
Read File Without Column Names . . . . . . . . . . . . . . . . . . . 2-14

Import Large Text File Data in Blocks . . . . . . . . . . . . . . . 2-16

Import Data from a Nonrectangular Text File . . . . . . . . 2-24

Write to Delimited Data Files . . . . . . . . . . . . . . . . . . . . . . . 2-26
Export Numeric Array to ASCII File . . . . . . . . . . . . . . . . . . 2-26
Export Table to Text File . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28

vi Contents



Export Cell Array to Text File . . . . . . . . . . . . . . . . . . . . . . . 2-29

Write to a Diary File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32

Spreadsheets

3
Ways to Import Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . 3-2
Import Data from Spreadsheets . . . . . . . . . . . . . . . . . . . . . . 3-2
Paste Data from Clipboard . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Select Spreadsheet Data Using Import Tool . . . . . . . . . . 3-4
Select Data Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Import Data from Multiple Spreadsheets . . . . . . . . . . . . . . 3-6

Import a Worksheet or Range . . . . . . . . . . . . . . . . . . . . . . . 3-8
Read Column-Oriented Data into Table . . . . . . . . . . . . . . . 3-8
Read Numeric and Text Data into Arrays . . . . . . . . . . . . . . 3-9
Get Information about a Spreadsheet . . . . . . . . . . . . . . . . . 3-11

Import All Worksheets from a File . . . . . . . . . . . . . . . . . . 3-12
Import Numeric Data from All Worksheets . . . . . . . . . . . . 3-12
Import Data and Headers from All Worksheets . . . . . . . . . 3-12

System Requirements for Importing Spreadsheets . . . . 3-15
Importing Spreadsheets with Excel for Windows . . . . . . . . 3-15
Importing Spreadsheets Without Excel for Windows . . . . . 3-15

When to Convert Dates from Excel Files . . . . . . . . . . . . . 3-16
MATLAB and Excel Dates . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Import an Excel File with Numeric Dates . . . . . . . . . . . . . . 3-17
Export to an Excel File with Numeric Dates . . . . . . . . . . . . 3-18

Export to Excel Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . 3-19
Write Tabular Data to Spreadsheet File . . . . . . . . . . . . . . . 3-19
Write Numeric and Text Data to Spreadsheet File . . . . . . . 3-20
Disable Warning When Adding New Worksheet . . . . . . . . 3-21

vii



Supported Excel File Formats . . . . . . . . . . . . . . . . . . . . . . . 3-21
Format Cells in Excel Files . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

Low-Level File I/O

4
Import Text Data Files with Low-Level I/O . . . . . . . . . . . 4-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Reading Data in a Formatted Pattern . . . . . . . . . . . . . . . . . 4-3
Reading Data Line-by-Line . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Testing for End of File (EOF) . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Opening Files with Different Character Encodings . . . . . . 4-9

Import Binary Data with Low-Level I/O . . . . . . . . . . . . . . 4-11
Low-Level Functions for Importing Data . . . . . . . . . . . . . . 4-11
Reading Binary Data in a File . . . . . . . . . . . . . . . . . . . . . . . 4-12
Reading Portions of a File . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Reading Files Created on Other Systems . . . . . . . . . . . . . . 4-17
Opening Files with Different Character Encodings . . . . . . 4-18

Export to Text Data Files with Low-Level I/O . . . . . . . . 4-19
Writing to Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
Appending or Overwriting Existing Files . . . . . . . . . . . . . . 4-22
Opening Files with Different Character Encodings . . . . . . 4-25

Export Binary Data with Low-Level I/O . . . . . . . . . . . . . . 4-26
Low-Level Functions for Exporting Data . . . . . . . . . . . . . . 4-26
Writing Binary Data to a File . . . . . . . . . . . . . . . . . . . . . . . 4-27
Overwriting or Appending to an Existing File . . . . . . . . . . 4-27
Creating a File for Use on a Different System . . . . . . . . . . 4-29
Opening Files with Different Character Encodings . . . . . . 4-30
Writing and Reading Complex Numbers . . . . . . . . . . . . . . . 4-31

viii Contents



Images

5
Importing Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Getting Information about Image Files . . . . . . . . . . . . . . . . 5-2
Reading Image Data and Metadata from TIFF Files . . . . . 5-3

Exporting to Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Exporting Image Data and Metadata to TIFF Files . . . . . . 5-6

Scientific Data

6
Importing CDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
High-Level CDF Import Functions . . . . . . . . . . . . . . . . . . . 6-2
Using the CDF Library Low-Level Functions to Import
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

Exporting to CDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Importing NetCDF Files and OPeNDAP Data . . . . . . . . . 6-12
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
Using the MATLAB High-Level NetCDF Functions to
Import Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12

Using the MATLAB Low-Level NetCDF Functions to
Import Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14

Troubleshooting OPeNDAP Connections . . . . . . . . . . . . . . . 6-20

Exporting to NetCDF Files . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Using the NetCDF High-Level Functions to Export
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21

Using the NetCDF Low-Level Functions to Export Data . . 6-26

Importing Flexible Image Transport System (FITS)
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30

ix



Importing HDF5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Using the High-Level HDF5 Functions to Import Data . . . 6-32
Using the Low-Level HDF5 Functions to Import Data . . . . 6-39

Exporting to HDF5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-40
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-40
Using the MATLAB High-Level HDF5 Functions to Export
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-40

Using the MATLAB Low-Level HDF5 Functions to Export
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41

Import HDF4 Files Programatically . . . . . . . . . . . . . . . . . 6-52
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-52
Using the MATLAB HDF4 High-Level Functions . . . . . . . 6-52

Map HDF4 to MATLAB Syntax . . . . . . . . . . . . . . . . . . . . . . 6-57

Import HDF4 Files Using Low-Level Functions . . . . . . . 6-59

Import HDF4 Files Interactively . . . . . . . . . . . . . . . . . . . . 6-63
Step 1: Opening an HDF4 File in the HDF Import Tool . . 6-63
Step 2: Selecting a Data Set in an HDF File . . . . . . . . . . . . 6-65
Step 3: Specifying a Subset of the Data (Optional) . . . . . . . 6-66
Step 4: Importing Data and Metadata . . . . . . . . . . . . . . . . . 6-67
Step 5: Closing HDF Files and the HDF Import Tool . . . . . 6-68
Using the HDF Import Tool Subsetting Options . . . . . . . . . 6-68

About HDF4 and HDF-EOS . . . . . . . . . . . . . . . . . . . . . . . . . 6-81

Export to HDF4 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-82
Write MATLAB Data to HDF4 File . . . . . . . . . . . . . . . . . . . 6-82
Manage HDF4 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-84

x Contents



Audio and Video

7
Read and Get Information About Audio Files . . . . . . . . 7-2

Record and Play Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Record Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Play Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Record or Play Audio within a Function . . . . . . . . . . . . . . . 7-7

Get Information about Video Files . . . . . . . . . . . . . . . . . . 7-9

Read Video Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Import Video Data from a File . . . . . . . . . . . . . . . . . . . . . . . 7-10
Display Video Frame with Colormap . . . . . . . . . . . . . . . . . . 7-10
Process Frames of a Video File . . . . . . . . . . . . . . . . . . . . . . . 7-10
Read Variable Frame Rate Video . . . . . . . . . . . . . . . . . . . . . 7-11

Supported Video File Formats . . . . . . . . . . . . . . . . . . . . . . 7-13
What Are Video Files? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Formats That VideoReader Supports . . . . . . . . . . . . . . . . . 7-13
View Codec Associated with Video File . . . . . . . . . . . . . . . . 7-14
Troubleshooting: Errors Reading Video File . . . . . . . . . . . . 7-15

Convert Between Image Sequences and Video . . . . . . . . 7-16

Export to Audio and Video . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Export to Audio Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Export Video to AVI Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20

Characteristics of Audio Files . . . . . . . . . . . . . . . . . . . . . . 7-22

XML Documents

8
Importing XML Documents . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

xi



What Is an XML Document Object Model (DOM)? . . . . . . . 8-2
Example — Finding Text in an XML File . . . . . . . . . . . . . . 8-3

Exporting to XML Documents . . . . . . . . . . . . . . . . . . . . . . . 8-6
Creating an XML File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
Updating an Existing XML File . . . . . . . . . . . . . . . . . . . . . . 8-8

Memory-Mapping Data Files

9
Overview of Memory-Mapping . . . . . . . . . . . . . . . . . . . . . . 9-2
What Is Memory-Mapping? . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Benefits of Memory-Mapping . . . . . . . . . . . . . . . . . . . . . . . . 9-2
When to Use Memory-Mapping . . . . . . . . . . . . . . . . . . . . . . 9-4
Maximum Size of a Memory Map . . . . . . . . . . . . . . . . . . . . . 9-5
Byte Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6

Map File to Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
Create a Simple Memory Map . . . . . . . . . . . . . . . . . . . . . . . 9-7
Specify Format of Your Mapped Data . . . . . . . . . . . . . . . . . 9-8
Map Multiple Data Types and Arrays . . . . . . . . . . . . . . . . . 9-9
Select File to Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11

Read Mapped File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

Write to Mapped File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Write to Memory Mapped as Numeric Array . . . . . . . . . . . 9-19
Write to Memory Mapped as Scalar Structure . . . . . . . . . . 9-21
Write to Memory Mapped as Nonscalar Structure . . . . . . . 9-21
Syntaxes for Writing to Mapped File . . . . . . . . . . . . . . . . . . 9-23
Work with Copies of Your Mapped Data . . . . . . . . . . . . . . . 9-24

Delete Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27
Ways to Delete a Memory Map . . . . . . . . . . . . . . . . . . . . . . 9-27
The Effect of Shared Data Copies On Performance . . . . . . 9-27

Share Memory Between Applications . . . . . . . . . . . . . . . . 9-28

xii Contents



Internet File Access

10
Downloading Web Content and Files . . . . . . . . . . . . . . . . 10-2
Example — Using the urlread Function . . . . . . . . . . . . . . . 10-2
Example — Using the urlwrite Function . . . . . . . . . . . . . . . 10-3

Sending Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
Example — Using the sendmail Function . . . . . . . . . . . . . . 10-5

Performing FTP File Operations . . . . . . . . . . . . . . . . . . . . 10-7
Example — Retrieving a File from an FTP Server . . . . . . . 10-7

Display Hyperlinks in the Command Window . . . . . . . . 10-9
Creating Hyperlinks to Web Pages . . . . . . . . . . . . . . . . . . . 10-9
Transferring Files Using FTP . . . . . . . . . . . . . . . . . . . . . . . 10-9

Install and Use Raspberry Pi Hardware

11
Install Support for Raspberry Pi Hardware . . . . . . . . . . 11-3
Install the Support Package . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Complete Additional Setup Tasks . . . . . . . . . . . . . . . . . . . . 11-5

Guidelines for Entering Static IP Settings . . . . . . . . . . . 11-17

Open Interactive Examples . . . . . . . . . . . . . . . . . . . . . . . . . 11-18

Connecting to Raspberry Pi Hardware . . . . . . . . . . . . . . 11-20

Connect to Raspberry Pi Hardware . . . . . . . . . . . . . . . . . 11-22
Create Connection to One Board . . . . . . . . . . . . . . . . . . . . . 11-22
Create Connection to a Board That Has Different
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23

Troubleshoot Connecting to Raspberry Pi Hardware . . 11-25

xiii



Connection Timed Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25
Host Does Not Exist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25
Active Connection Already Exists . . . . . . . . . . . . . . . . . . . . 11-26

Get the IP Address of the Raspberry Pi Hardware . . . . 11-27
Hear the Spoken IP Address . . . . . . . . . . . . . . . . . . . . . . . . 11-27
Show the IP Address on a Display . . . . . . . . . . . . . . . . . . . . 11-27

The Raspberry Pi LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29

Turn the Raspberry Pi LED On and Off . . . . . . . . . . . . . . 11-31

Flash the Raspberry Pi LED in Response to an Input . . 11-34

The Raspberry Pi GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . 11-35

Use the Raspberry Pi GPIO Pins as Digital Inputs and
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-36

Troubleshoot Raspberry Pi GPIO Pins . . . . . . . . . . . . . . . 11-40
Error Using raspi/writeDigitalPin . . . . . . . . . . . . . . . . . . . . 11-40
Error Using raspi/readDigitalPin . . . . . . . . . . . . . . . . . . . . . 11-40
Unexpected Digital Pin Number . . . . . . . . . . . . . . . . . . . . . 11-41

The Raspberry Pi Serial Port . . . . . . . . . . . . . . . . . . . . . . . 11-42

Use the Raspberry Pi Serial Port to Connect to a
Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-43

Troubleshoot the Raspberry Pi Serial Port . . . . . . . . . . . 11-48
Missing or Garbled Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-48

The Raspberry Pi I2C Interface . . . . . . . . . . . . . . . . . . . . . 11-49

Use the Raspberry Pi I2C Interface to Connect to a
Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-50

Troubleshoot the Raspberry Pi I2C Interface . . . . . . . . 11-54

xiv Contents



The Raspberry Pi SPI Interface . . . . . . . . . . . . . . . . . . . . . 11-55

Use the Raspberry Pi SPI Interface to Connect to a
Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-57

The Raspberry Pi Camera Board . . . . . . . . . . . . . . . . . . . . 11-61

Use the Raspberry Pi Camera Board to Capture Images
and Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-63

Troubleshoot the Raspberry Pi Camera Board . . . . . . . 11-65

The Raspberry Pi Linux Command Interface . . . . . . . . . 11-66

Run Linux Commands on Raspberry Pi Hardware . . . . 11-67

Troubleshoot Running Linux Commands on Raspberry
Pi Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-70

Management of Raspberry Pi Files . . . . . . . . . . . . . . . . . . 11-71

Manage Raspberry Pi Files . . . . . . . . . . . . . . . . . . . . . . . . . 11-72

Troubleshoot Managing Raspberry Pi Files . . . . . . . . . . 11-73

Webcam Support in MATLAB

12
Webcam Acquisition Overview . . . . . . . . . . . . . . . . . . . . . . 12-2
Webcam Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Supported Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

Connecting to Webcams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

Acquiring Images from Webcams . . . . . . . . . . . . . . . . . . . . 12-6

xv



Creating a Webcam Object . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Acquiring Webcam Images . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10
Acquiring Webcam Images in a Loop . . . . . . . . . . . . . . . . . . 12-14
Supported Functions for Webcam . . . . . . . . . . . . . . . . . . . . 12-16

Setting Properties for Webcam Acquisition . . . . . . . . . . 12-17

Installing the Webcam Support Package . . . . . . . . . . . . . 12-22

xvi Contents



1

File Opening, Loading, and
Saving

• “Supported File Formats for Import and Export” on page 1-2

• “Methods for Importing Data” on page 1-7

• “Import Images, Audio, and Video Interactively” on page 1-9

• “Import or Export a Sequence of Files” on page 1-13

• “View the Contents of a MAT-File” on page 1-14

• “Load Parts of Variables from MAT-Files” on page 1-15

• “Save Parts of Variables to MAT-Files” on page 1-20

• “Save Structure Fields as Separate Variables” on page 1-23

• “MAT-File Versions” on page 1-24

• “File Size Increases Unexpectedly When Growing Array” on page 1-27

• “Loading Variables within a Function” on page 1-29

• “Create Temporary Files” on page 1-30



1 File Opening, Loading, and Saving

Supported File Formats for Import and Export
The following table shows the file formats that you can import and export
from the MATLAB® application.

In addition to the functions in the table, you also can use the importdata
function, or import these file formats interactively, with the following
exceptions:

• importdata and interactive import do not support H5 and netCDF files.

• importdata does not support HDF files.

File Content Extension Description Import
Function

Export
Function

Saved MATLAB
workspace

load saveMATLAB
formatted data

MAT

Partial access of
variables in MATLAB
workspace

matfile matfile

Comma delimited
numbers

csvread csvwrite

Delimited numbers dlmread dlmwrite

Delimited numbers, or
a mix of strings and
numbers

textscan none

Text any,
including:
CSV
TXT

Column-oriented
delimited numbers
or a mix of strings and
numbers

readtable writetable

1-2



Supported File Formats for Import and Export

File Content Extension Description Import
Function

Export
Function

Worksheet or range of
spreadsheet

xlsread xlswriteSpreadsheet XLS
XLSX
XLSM

XLSB
(Systems
with
Microsoft®

Excel® for
Windows®

only)

XLTM
(import only)
XLTX
(import only)

ODS
(Systems
with COM
interface)

Column-oriented data in
worksheet or range of
spreadsheet

readtable writetable

Extensible Markup
Language

XML XML-formatted text xmlread xmlwrite

Data Acquisition
Toolbox™ file

DAQ Data Acquisition
Toolbox

daqread none

CDF Common Data Format See cdflib See cdflib

FITS Flexible Image
Transport System

See “FITS
Files”

See “FITS
Files”

HDF Hierarchical Data
Format, version 4, or
HDF-EOS v. 2

See “HDF4
Files”

See “HDF4
Files”

H5 HDF or HDF-EOS,
version 5

See “HDF5
Files”

See “HDF5
Files”

Scientific data

NC Network Common Data
Form (netCDF)

See netcdf See netcdf

1-3



1 File Opening, Loading, and Saving

File Content Extension Description Import
Function

Export
Function

BMP Windows Bitmap

GIF Graphics Interchange
Format

HDF Hierarchical Data
Format

JPEG
JPG

Joint Photographic
Experts Group

JP2
JPF
JPX
J2C
J2K

JPEG 2000

PBM Portable Bitmap

PCX Paintbrush

PGM Portable Graymap

PNG Portable Network
Graphics

PNM Portable Any Map

PPM Portable Pixmap

RAS Sun™ Raster

TIFF
TIF

Tagged Image File
Format

XWD X Window Dump

imread imwrite

CUR Windows Cursor
resources

FITS
FTS

Flexible Image
Transport System

Image

ICO Windows Icon resources

imread none

1-4



Supported File Formats for Import and Export

File Content Extension Description Import
Function

Export
Function

AU
SND

NeXT/Sun sound

FLAC Free Lossless Audio
Codec

OGG Ogg Vorbis

Audio (all
platforms)

WAV Microsoft WAVE sound

audioread audiowrite

M4A
MP4

MPEG-4 audioread audiowriteAudio (Windows)

any Formats supported
by Microsoft Media
Foundation

audioread none

Audio (Mac) M4A
MP4

MPEG-4 audioread audiowrite

Audio (Linux®) any Formats supported by
GStreamer

audioread none

AVI Audio Video InterleaveVideo (all
platforms) MJ2 Motion JPEG 2000

VideoReader VideoWriter

MPG MPEG-1

ASF
ASX
WMV

Windows Media®
Video (Windows)

any Formats supported by
Microsoft DirectShow®

VideoReader none

MP4
M4V

MPEG-4 VideoReader VideoWriter

MOV QuickTime

Video (Windows 7
or later)

any Formats supported
by Microsoft Media
Foundation

VideoReader none

1-5



1 File Opening, Loading, and Saving

File Content Extension Description Import
Function

Export
Function

MP4
M4V

MPEG-4 VideoReader VideoWriter

MPG MPEG-1

MOV QuickTime

Video (Mac)

any Formats supported by
QuickTime, including
.3gp, .3g2, and .dv

VideoReader none

Video (Linux) any Formats supported
by your installed
GStreamer plug-ins,
including .ogg

VideoReader none

1-6



Methods for Importing Data

Methods for Importing Data

In this section...

“Tools that Import Multiple File Formats” on page 1-7

“Importing Specific File Formats” on page 1-8

“Importing Data with Low-Level I/O” on page 1-8

Caution When you import data into the MATLAB workspace, the new
variables you create overwrite any existing variables in the workspace that
have the same name.

Tools that Import Multiple File Formats
You can import data into MATLAB from a disk file or the system clipboard
interactively.

To import data from a file, do one of the following:

• On the Home tab, in the Variable section, select Import Data .

• Double-click a file name in the Current Folder browser.

• Call uiimport.

To import data from the clipboard, do one of the following:

• On the Workspace browser title bar, click , and then select Paste.

• Call uiimport.

To import without invoking a graphical user interface, the easiest option
is to use the importdata function.

For a complete list of the formats you can import interactively or with
importdata, see “Supported File Formats for Import and Export” on page 1-2.

1-7



1 File Opening, Loading, and Saving

Importing Specific File Formats
MATLAB includes functions tailored to import specific file formats. Consider
using format-specific functions instead of importing data interactively when
you want to import only a portion of a file. Many of the format-specific
functions provide options for selecting ranges or portions of data. Some
format-specific functions allow you to request multiple optional outputs. This
option is not available when you import interactively.

For a complete list of the format-specific functions, see “Supported File
Formats for Import and Export” on page 1-2.

For binary data files, consider “Overview of Memory-Mapping” on page 9-2.
Memory-mapping enables you to access file data using standard MATLAB
indexing operations.

Alternatively, MATLAB toolboxes perform specialized import operations.
For example, use Database Toolbox™ software for importing data from
relational databases. Refer to the documentation on specific toolboxes to see
the available import features.

Importing Data with Low-Level I/O
If the Import Wizard, importdata, and format-specific functions cannot read
your data, use low-level I/O functions such as fscanf or fread. Low-level
functions allow the most control over reading from a file, but require detailed
knowledge of the structure of your data. For more information, see:

• “Import Text Data Files with Low-Level I/O” on page 4-2

• “Import Binary Data with Low-Level I/O” on page 4-11

1-8



Import Images, Audio, and Video Interactively

Import Images, Audio, and Video Interactively

In this section...

“Viewing the Contents of a File” on page 1-9

“Specifying Variables” on page 1-10

“Generating Reusable MATLAB Code” on page 1-11

Note For information on importing text files, see “Select Text File Data
Using Import Tool” on page 2-4. For information on importing spreadsheets,
see “Select Spreadsheet Data Using Import Tool” on page 3-4. For information
on importing HDF4 files, see “Import HDF4 Files Interactively” on page 6-63.

Viewing the Contents of a File
Start the Import Wizard by selecting Import Data or calling uiimport.

To view images or video, or to listen to audio, click the Back button on the
first window that the Import Wizard displays.

The right pane of the new window includes a preview tab. Click the button in
the preview tab to show an image or to play audio or video.

1-9



1 File Opening, Loading, and Saving

Specifying Variables
The Import Wizard generates default variable names based on the format and
content of your data. You can change the variables in any of the following
ways:

• “Renaming or Deselecting Variables” on page 1-10

• “Importing to a Structure Array” on page 1-11

The default variable name for data imported from the system clipboard is
A_pastespecial.

If the Import Wizard detects a single variable in a file, the default variable
name is the file name. Otherwise, the Import Wizard uses default variable
names that correspond to the output fields of the importdata function. For
more information on the output fields, see the importdata function reference
page.

Renaming or Deselecting Variables
To override the default variable name, select the name and type a new one.

1-10



Import Images, Audio, and Video Interactively

To avoid importing a particular variable, clear the check box in the Import
column.

Importing to a Structure Array
To import data into fields of a structure array rather than as individual
variables, start the Import Wizard by calling uiimport with an output
argument. For example, the sample file durer.mat contains three variables:
X, caption, and map. If you issue the command

durerStruct = uiimport('durer.mat')

and click the Finish button, the Import Wizard returns a scalar structure
with three fields:

durerStruct =
X: [648x509 double]

map: [128x3 double]
caption: [2x28 char]

To access a particular field, use dot notation. For example, view the caption
field:

disp(durerStruct.caption)

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Access Data in a Structure Array”.

Generating Reusable MATLAB Code
To create a function that reads similar files without restarting the Import
Wizard, select the Generate MATLAB code check box. When you click
Finish to complete the initial import operation, MATLAB opens an Editor
window that contains an unsaved function. The default function name is
importfile.m or importfileN.m, where N is an integer.

The function in the generated code includes the following features:

1-11



1 File Opening, Loading, and Saving

• For text files, if you request vectors from rows or columns, the generated
code also returns vectors.

• When importing from files, the function includes an input argument for the
name of the file to import, fileToRead1.

• When importing into a structure array, the function includes an output
argument for the name of the structure, newData1.

However, the generated code has the following limitations:

• If you rename or deselect any variables in the Import Wizard, the generated
code does not reflect those changes.

• If you do not import into a structure array, the generated function creates
variables in the base workspace. If you plan to call the generated function
from within your own function, your function cannot access these variables.
To allow your function to access the data, start the Import Wizard by
calling uiimport with an output argument. Call the generated function
with an output argument to create a structure array in the workspace
of your function.

MATLAB does not automatically save the function. To save the file, select
Save. For best results, use the function name with a .m extension for the
file name.

1-12



Import or Export a Sequence of Files

Import or Export a Sequence of Files
To import or export multiple files, create a control loop to process one file at a
time. When constructing the loop:

• To build sequential file names, use sprintf.

• To find files that match a pattern, use dir.

• Use function syntax to pass the name of the file to the import or export
function. (For more information, see “Command vs. Function Syntax”.)

For example, to read files named file1.txt through file20.txt with
importdata:

numfiles = 20;
mydata = cell(1, numfiles);

for k = 1:numfiles
myfilename = sprintf('file%d.txt', k);
mydata{k} = importdata(myfilename);

end

To read all files that match *.jpg with imread:

jpegFiles = dir('*.jpg');
numfiles = length(jpegFiles);
mydata = cell(1, numfiles);

for k = 1:numfiles
mydata{k} = imread(jpegFiles(k).name);

end

1-13



1 File Opening, Loading, and Saving

View the Contents of a MAT-File
MAT-files are binary MATLAB format files that store workspace variables.

To see the variables in a MAT-file before loading the file into your workspace,
click the file name in the Current Folder browser. Information about the
variables appears in the Details Panel.

Alternatively, use the command whos -file filename. This function returns
the name, dimensions, size, and class of all variables in the specified MAT-file.

For example, view the contents of the example file durer.mat:

whos -file durer.mat

MATLAB returns:

Name Size Bytes Class Attributes

X 648x509 2638656 double
caption 2x28 112 char
map 128x3 3072 double

The byte counts represent the number of bytes that the data occupies when
loaded into the MATLAB workspace. Compressed data uses fewer bytes in
a file than in the workspace. In Version 7 or higher MAT-files, MATLAB
compresses data. For more information, see “MAT-File Versions” on page 1-24.

1-14



Load Parts of Variables from MAT-Files

Load Parts of Variables from MAT-Files

In this section...

“Load Using the matfile Function” on page 1-15

“Load from Variables with Unknown Names” on page 1-16

“Avoid Repeated File Access” on page 1-17

“Avoid Inadvertently Loading Entire Variables” on page 1-18

“Partial Loading Requires Version 7.3 MAT-Files” on page 1-18

Load Using the matfile Function
This example shows how to load part of a variable from an existing MAT-file.

To run the code in this example, create a Version 7.3 MAT-file with two
variables.

A = rand(5);
B = magic(10);
save example.mat A B -v7.3;
clear A B

Construct a matlab.io.MatFile object that can load parts of variables from
the file, example.mat.

example = matfile('example.mat')

example =

matlab.io.MatFile

Properties:
Properties.Source: C:\Documents\MATLAB\example.mat

Properties.Writable: false
A: [5x5 double]
B: [10x10 double]

1-15



1 File Opening, Loading, and Saving

The matfile function creates a matlab.io.MatFile object that corresponds
to a MAT-file and displays the properties of the matlab.io.MatFile object.

Load the first column of B from example.mat into variable firstColB.

firstColB = example.B(:,1);

When you index into objects associated with Version 7.3 MAT-files, MATLAB
loads only the part of the variable that you specify.

By default, matfile only allows loading from existing MAT-files. To enable
saving, call matfile with the Writable parameter.

example = matfile('example.mat','Writable',true);

Alternatively, construct the object and set Properties.Writable in separate
steps.

example = matfile('example.mat');
example.Properties.Writable = true;

Load from Variables with Unknown Names
This example shows how to dynamically access variables, whose names are
not always known. Consider the example MAT-file, topography.mat, that
contains one or more arrays with unknown names.

Construct a matlab.io.MatFile object that corresponds to the file,
topography.mat. Call who to get the variable names in the file.

matObj = matfile('topography.mat');
varlist = who(matObj)

varlist =

'topo'
'topolegend'
'topomap1'
'topomap2'

varlist is a cell array containing the names of the four variables in
topography.mat.

1-16



Load Parts of Variables from MAT-Files

The third and fourth variables, topomap1 and topomap2, are both arrays
containing topography data. Load the elevation data from the third column
of each variable into a field of the structure array, S. For each field, specify
a field name that is the original variable name prefixed by elevationOf_.
Access the data in each variable as properties of matObj. Because varName is
a variable, enclose it in parentheses.

for index = 3:4
varName = varlist{index};
S(1).(['elevationOf_',varName]) = matObj.(varName)(:,3);

end

View the contents of the structure array, S.

S

S =

elevationOf_topomap1: [64x1 double]
elevationOf_topomap2: [128x1 double]

S has two fields, elevationOf_topomap1 and elevationOf_topomap2, each
containing a column vector.

Avoid Repeated File Access
The primary advantage of matfile over the load function is that you can
process parts of very large data sets that are otherwise too large to fit in
memory. When working with these large variables, read and write as much
data into memory as possible at a time. Otherwise, repeated file access
negatively impacts the performance of your code.

For example, suppose a variable in your file contains many rows and columns,
and loading a single row requires most of the available memory. To calculate
the mean of the entire data set, calculate the mean of each row, and then
find the overall mean.

example = matfile('example.mat');
[nrows, ncols] = size(example,'B');

avgs = zeros(1, nrows);

1-17



1 File Opening, Loading, and Saving

for idx = 1:nrows
avgs(idx) = mean(example.B(idx,:));

end
overallAvg = mean(avgs);

Avoid Inadvertently Loading Entire Variables
When you do not know the size of a large variable in a MAT-file, and want to
load parts of that variable at a time, do not use the end keyword. Rather, call
the size method for matlab.io.MatFile objects. For example, this code

[nrows,ncols] = size(example,'B');
lastColB = example.B(:,ncols);

requires less memory than

lastColB = example.B(:,end);

which temporarily loads the entire contents of B. For very large variables,
loading takes a long time or generates Out of Memory errors.

Similarly, any time you refer to a variable with syntax of the form
matObj.varName, such as example.B, MATLAB temporarily loads the entire
variable into memory. Therefore, make sure to call the size method for
matlab.io.MatFile objects with syntax such as

[nrows,ncols] = size(example,'B');

rather than passing the entire contents of example.B to the size function,

[nrows,ncols] = size(example.B);

The difference in syntax is subtle, but significant.

Partial Loading Requires Version 7.3 MAT-Files
Any load or save operation that uses a matlab.io.MatFile object associated
with a Version 7 or earlier MAT-file temporarily loads the entire variable
into memory.

The matfile function creates files in Version 7.3 format. For example, this
code

1-18



Load Parts of Variables from MAT-Files

newfile = matfile('newfile.mat');

creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert
existing MAT-files to Version 7.3 by calling the save function with the -v7.3
option, such as

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

To change your preferences to save new files in Version 7.3 format, access the
Environment section on the Home tab, and click Preferences. Select
MATLAB > General > MAT-Files.

1-19



1 File Opening, Loading, and Saving

Save Parts of Variables to MAT-Files

In this section...

“Save Using the matfile Function” on page 1-20

“Partial Saving Requires Version 7.3 MAT-Files” on page 1-22

Save Using the matfile Function
This example shows how to change and save part of a variable in a MAT-file.
To run the code in this example, create a Version 7.3 MAT-file with two
variables.

A = rand(5);
B = ones(4,8);
save example.mat A B -v7.3;
clear A B

Update the values in the first row of variable B in example.mat.

example = matfile('example.mat','Writable',true)
example.B(1,:) = 2 * example.B(1,:);

The matfile function creates a matlab.io.MatFile object that corresponds
to a MAT-file:

matlab.io.MatFile

Properties:
Properties.Source: C:\Documents\MATLAB\example.mat

Properties.Writable: true
A: [5x5 double]
B: [4x8 double]

When you index into objects associated with Version 7.3 MAT-files, MATLAB
loads and saves only the part of the variable that you specify. This partial
loading or saving requires less memory than load or save commands, which
always operate on entire variables.

1-20



Save Parts of Variables to MAT-Files

For very large files, the best practice is to read and write as much data into
memory as possible at a time. Otherwise, repeated file access negatively
impacts the performance of your code. For example, suppose your file contains
many rows and columns, and loading a single row requires most of the
available memory. Rather than updating one element at a time, update each
row.

example = matfile('example.mat','Writable',true);

[nrowsB,ncolsB] = size(example,'B');
for row = 1:nrowsB

example.B(row,:) = row * example.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable
at a time, such as

example = matfile('example.mat','Writable',true);
example.B = 10 * example.B;

Alternatively, update a variable by calling the save function with the -append
option. The -append option requests that the save function replace only the
specified variable, B, and leave other variables in the file intact:

load('example.mat','B');
B(1,:) = 2 * B(1,:);
save('example.mat','-append','B');

This method always requires that you load and save the entire variable.

Use either method to add a variable to the file. For example, this code

example = matfile('example.mat','Writable',true);
example.C = magic(8);

performs the same save operation as

C = magic(8);
save('example.mat','-append','C');
clear C

1-21



1 File Opening, Loading, and Saving

Partial Saving Requires Version 7.3 MAT-Files
Any load or save operation that uses a matlab.io.MatFile object associated
with a Version 7 or earlier MAT-file temporarily loads the entire variable
into memory.

The matfile function creates files in Version 7.3 format. For example, this
code

newfile = matfile('newfile.mat');

creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert
existing MAT-files to Version 7.3 by calling the save function with the -v7.3
option, such as

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

To change your preferences to save new files in Version 7.3 format, access the
Environment section on the Home tab, and click Preferences. Select
MATLAB > General > MAT-Files.

1-22



Save Structure Fields as Separate Variables

Save Structure Fields as Separate Variables
If any of the variables in your current workspace are structure arrays, the
default behavior of the save function is to store the entire structure. To store
fields of a scalar structure as individual variables, use the -struct option
to the save function.

For example, consider structure S:

S.a = 12.7; S.b = {'abc', [4 5; 6 7]}; S.c = 'Hello!';

Save the entire structure to newstruct.mat with the usual syntax:

save('newstruct.mat', 'S')

The file contains the variable S:

Name Size Bytes Class
S 1x1 550 struct

Alternatively, save the fields individually with the -struct option:

save('newstruct.mat', '-struct', 'S')

The file contains variables a, b, and c, but not S:

Name Size Bytes Class
a 1x1 8 double
b 1x2 158 cell
c 1x6 12 char

To save only selected fields, such as a and c:

save('newstruct.mat', '-struct', 'S', 'a', 'c')

1-23



1 File Opening, Loading, and Saving

MAT-File Versions

In this section...

“Default Version” on page 1-24

“Overriding the Default MAT-File Version” on page 1-24

“Speeding Up Save and Load Operations” on page 1-25

Default Version
By default, all save operations except new file creation with the matfile
function create Version 7 MAT-files. Override the default to:

• Allow access to the file using earlier versions of MATLAB.

• Take advantage of Version 7.3 MAT-file features: data items larger than 2
GB on 64-bit systems, and saving or loading parts of variables.

Note Version 7.3 MAT-files use an HDF5 based format that requires some
overhead storage to describe the contents of the file. For complex nested
cell or structure arrays, Version 7.3 MAT-files are sometimes larger than
Version 7 MAT-files.

• Reduce the time required to load and save some files by storing
uncompressed data. For more information, see “Speeding Up Save and
Load Operations” on page 1-25.

Overriding the Default MAT-File Version
To identify or change the default version, access the Environment
section on the Home tab, and click Preferences. Select
MATLAB > General > MAT-Files. Alternatively, specify a MAT-file version
as an argument to the save function.

For example, to create a MAT-file named myfile.mat that you can load with
MATLAB Version 6, use the following command:

save('myfile.mat','-v6')

1-24



MAT-File Versions

The following table shows the differences between previous and current
MAT-file versions.

Value of
version

Can Load
in MATLAB
Versions Supported Features

'-v7.3' 7.3 (R2006b) or
later

Version 7.0 features, plus support for data
items greater than or equal to 2 GB on
64-bit systems.

'-v7' 7.0 (R14) or later Version 6 features, plus data compression
and Unicode® character encoding. Unicode
encoding enables file sharing between
systems that use different default character
encoding schemes.

'-v6' 5 (R8) or later Version 4 features, plus N-dimensional
arrays, cell arrays and structures, and
variable names greater than 19 characters.

'-v4' all Two-dimensional double, character, and
sparse arrays.

Speeding Up Save and Load Operations
Beginning with Version 7, MATLAB compresses data when writing to
MAT-files to save storage space. Data compression and decompression slow
down all save operations and some load operations. In most cases, the
reduction in file size is worth the additional time spent.

In fact, loading compressed data is sometimes faster than loading
uncompressed data. For example, consider a block of data in a numeric array
saved to both a 10 MB compressed file and a 100 MB uncompressed file.
Loading the first 10 MB takes the same amount of time for each file. Loading
the remaining 90 MB from the uncompressed file takes nine times as long as
loading the first 10 MB. Completing the load of the compressed file requires
only the relatively short time to decompress the data.

However, the benefits of data compression are negligible in the following
cases:

1-25



1 File Opening, Loading, and Saving

• The amount of data in each item is small relative to the complexity of its
container. For example, simple numeric arrays take less time to compress
and uncompress than cell or structure arrays of the same size. Compressing
arrays that result in an uncompressed file size of less than 3MB offers
limited benefit, unless you are transferring data over a network.

• The data is random, with no repeated patterns or consistent values.

Version 7.3 MAT-files use an HDF5-based format that stores data in
compressed chunks. The time required to load part of a variable from a
Version 7.3 MAT-file depends on how that data is stored across one or more
chunks. Each chunk that contains any portion of the data you want to load
must be fully uncompressed to access the data. Rechunking your data can
improve the performance of the load operation. To rechunk data, use the
HDF5 command line tools, which are part of the HDF5 distribution.

Version 6 MAT-files do not use compression. To create a Version 6 MAT-file,
use the methods described in “Overriding the Default MAT-File Version”
on page 1-24.

1-26



File Size Increases Unexpectedly When Growing Array

File Size Increases Unexpectedly When Growing Array
This example shows how to prevent an array from growing when writing
one million double-precision values to a file, by assigning initial values to
the array.

Construct a matlab.io.MatFile object for writing.

fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;

Define parameters of the values to write. In this case, write one million
values, fifty thousand at a time. The values should have a mean of 123.4, and
a standard deviation of 56.7.

size = 1000000;
chunk = 50000;
mean = 123.4;
std = 56.7;

Assign an initial value of zero to the last element in the array prior to
populating it with data.

matObj.data(1,size) = 0;

View the size of the file.

• On Windows systems, use dir.

system('dir matFileOfDoubles.mat');

• On UNIX® systems, use ls -ls:

system('ls -ls matFileOfDoubles.mat');

matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value to
the last element of the array does not create a large file.

Write data to the array, one chunk at a time.

nout = 0;

1-27



1 File Opening, Loading, and Saving

while(nout < size)
fprintf('Writing %d of %d\n',nout,size);
chunkSize = min(chunk,size-nout);
data = mean + std * randn(1,chunkSize);
matObj.data(1,(nout+1):(nout+chunkSize)) = data;
nout = nout + chunkSize;

end

View the size of the file.

system('dir matFileOfDoubles.mat');

The file size is now larger now because the array is populated with data.

1-28



Loading Variables within a Function

Loading Variables within a Function
If you define a function that loads data from a MAT-file, and find that
MATLAB does not return the expected results, check whether any variables
in the MAT-file share the same name as a MATLAB function. Common
variable names that conflict with function names include i, j, mode, char,
size, and path.

For example, consider a MAT-file with variables height, width, and length.
If you load these variables using a function such as findVolume,

function vol = findVolume(myfile)
load(myfile);
vol = height * width * length;

MATLAB interprets the reference to length as a call to the MATLAB length
function, and returns an error:

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of the
following approaches:

• Load into a structure array. For example, define the findVolume function
as follows:

function vol = findVolume(myfile)
dims = load(myfile);
vol = dims.height * dims.width * dims.length;

• Explicitly include the names of variables in the call to the load function.

• Initialize variables (e.g., assign to an empty matrix or empty string) within
the function before calling load.

To determine whether a particular name is associated with a MATLAB
function, use the exist function.

1-29



1 File Opening, Loading, and Saving

Create Temporary Files
Use the tempdir function to return the name of the folder designated to hold
temporary files on your system. For example, issuing tempdir on The Open
Group UNIX systems returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder.
The returned file name is a suitable destination for temporary data. For
example, if you need to store some data in a temporary file, then you might
issue the following command first:

fileID = fopen(tempname,'w');

In most cases, tempname generates a universally unique identifier (UUID).
However, if you run MATLAB without JVM™, then tempname generates
a random string using the CPU counter and time, and this string is not
guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On
other systems, designating a file as temporary means only that the file is
not backed up.

1-30



2

Text Files

• “Ways to Import Text Files” on page 2-2

• “Select Text File Data Using Import Tool” on page 2-4

• “Import Dates and Times from Text Files” on page 2-9

• “Import Numeric Data from Text Files” on page 2-10

• “Import Mixed Text and Numeric Data from Text Files” on page 2-13

• “Import Large Text File Data in Blocks” on page 2-16

• “Import Data from a Nonrectangular Text File” on page 2-24

• “Write to Delimited Data Files” on page 2-26

• “Write to a Diary File” on page 2-32



2 Text Files

Ways to Import Text Files
You can import text files into MATLAB both interactively and
programmatically.

To import data interactively, use the Import Tool. You can generate code
to repeat the operation on multiple similar files. The Import Tool supports
text files, including those with the extensions .txt, .dat, .csv, .asc, .tab,
and .dlm. These text files can be nonrectangular, and can have row and
column headers, as shown in the following figure. Data in these files can
be a combination of numeric and nonnumeric text, and can be delimited by
one or more characters.

To import data from text files programmatically, use an import function. Most
of the import functions for text files require that each row of data has the same
number of columns, and they allow you to specify a range of data to import.

This table compares the primary import options for text files.

Import Option Description For More
Information, See...

Import Tool Import a file or range
of data to column
vectors, a matrix, a cell
array, or a table. You
can generate code to

“Select Text File Data
Using Import Tool” on
page 2-4

2-2



Ways to Import Text Files

Import Option Description For More
Information, See...

repeat the operation on
multiple similar files.

readtable Import column-oriented
data into a table.

“Import Mixed Text
and Numeric Data from
Text Files” on page 2-13

csvread Import a file or range
of comma-separated
numeric data to a
matrix.

“Import
Comma-Separated
Data” on page 2-10

dlmread Import a file or a
range of numeric data
separated by any single
delimiter to a matrix.

“Import Delimited
Numeric Data” on page
2-11

textscan Import a
nonrectangular or
arbitrarily formatted
text file to a cell array.

“Import Data from a
Nonrectangular Text
File” on page 2-24

For information on importing files with more complex formats, see “Import
Text Data Files with Low-Level I/O” on page 4-2.

2-3



2 Text Files

Select Text File Data Using Import Tool

In this section...

“Select Data Interactively” on page 2-4

“Import Data from Multiple Text Files” on page 2-7

Select Data Interactively
This example shows how to import data from a text file with column
headers and numeric data using the Import Tool. The file in this example,
grades.txt, contains the following data (to create the file, use any text
editor, and copy and paste):

John Ann Mark Rob
88.4 91.5 89.2 77.3
83.2 88.0 67.8 91.0
77.8 76.3 92.5
92.1 96.4 81.2 84.6

On the Home tab, in the Variable section, click Import Data .
Alternatively, right-click the name of the file in the Current Folder browser
and select Import Data. The Import Tool opens.

2-4



Select Text File Data Using Import Tool

The Import Tool recognizes that grades.txt is a fixed width file. In the
Imported Data section, select how you want the data to be imported. The
following table indicates how data is imported depending on the option you
select.

Option Selected How Data is Imported

Column vectors Import each column of the selected
data as an individual m-by-1 vector.

Matrix Import selected data as an m-by-n
numeric array.

Cell Array Import selected data as a cell array
that can contain multiple data types,
such as numeric data and text.

Table Import selected data as a table.

Under More Options, you can specify whether the Import Tool should use a
period or a comma as the decimal separator for numeric values.

2-5



2 Text Files

Double-click on a variable name to rename it.

You also can use the Variable Names Row box in the Selection section to
select the row in the text file that the Import Tool uses for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are
cells that contain data that cannot be imported in the format specified for
that column. In this example, the cell at row 3, column C, is considered
unimportable because a blank cell is not numeric. Highlight colors correspond
to proposed rules to make the data fit into a numeric array. You can add,
remove, reorder, or edit rules, such as changing the replacement value from
NaN to another value.

2-6



Select Text File Data Using Import Tool

All rules apply to the imported data only, and do not change the data in the
file. You must specify rules any time the range includes nonnumeric data and
you are importing into a matrix or numeric column vectors.

You can see how your data will be imported when you place the cursor over
individual cells.

When you click the Import Selection button , the Import Tool creates
variables in your workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files
This example shows how to perform the same import operation on multiple
files using the Import Tool. You can generate code from the Import Tool,
making it easier to repeat the operation. The Import Tool generates a
program script that you can edit and run to import the files, or a function
that you can call for each file.

2-7



2 Text Files

Suppose you have a set of text files in the current folder named myfile01.txt
through myfile25.txt, and you want to import the data from each file,
starting from the second row. Generate code to import the entire set of files as
follows:

1 Open one of the files in the Import Tool.

2 Click Import Selection , and then select Generate Function. The
Import Tool generates code similar to the following excerpt, and opens
the code in the Editor.

function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.
...

3 Save the function.

4 In a separate program file or at the command line, create a for loop to
import data from each text file into a cell array named myData:

numFiles = 25;
startRow = 2;
endRow = inf;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
fileName = sprintf('myfile%02d.txt',fileNum);
myData{fileNum} = importfile(fileName,startRow,endRow);

end

Each cell in myData contains an array of data from the corresponding text file.
For example, myData{1} contains the data from the first file, myfile01.txt.

2-8



Import Dates and Times from Text Files

Import Dates and Times from Text Files
Formatted dates and times (such as '01/01/01' or '12:30:45') are not
numeric fields. MATLAB interprets dates and times in files as text strings.

You can use the Import Tool to import formatted dates and times as serial
date numbers. Specify the formats of dates and times, using the drop-down
menu for each column. You can select from a predefined date format, or enter
a custom format.

2-9



2 Text Files

Import Numeric Data from Text Files

In this section...

“Import Comma-Separated Data” on page 2-10

“Import Delimited Numeric Data” on page 2-11

Import Comma-Separated Data
This example shows how to import comma-separated numeric data from a
text file, using the csvread function.

Create a sample file named ph.dat that contains the following
comma-separated data:

85.5, 54.0, 74.7, 34.2
63.0, 75.6, 46.8, 80.1
85.5, 39.6, 2.7, 38.7

A = 0.9*gallery('integerdata',99,[3,4],1);
dlmwrite('ph.dat',A,',');

The sample file, ph.dat, resides in your current folder.

Read the entire file using csvread. The file name is the only required input
argument to the csvread function.

M = csvread('ph.dat')

M =

85.5000 54.0000 74.7000 34.2000
63.0000 75.6000 46.8000 80.1000
85.5000 39.6000 2.7000 38.7000

M is a 3-by-4 double array containing the data from the file.

2-10



Import Numeric Data from Text Files

Import only the rectangular portion of data starting from the first row and
third column in the file. When using csvread, row and column indices are
zero-based.

N = csvread('ph.dat',0,2)

N =

74.7000 34.2000
46.8000 80.1000
2.7000 38.7000

Import Delimited Numeric Data
This example shows how to import numeric data delimited by any single
character using the dlmread function.

Create a tab-delimited file named num.txt that contains the following data:

95 89 82 92
23 76 45 74
61 46 61 18
49 2 79 41

A = gallery('integerdata',99,[4,4],0);
dlmwrite('num.txt',A,'\t');

The sample file, num.txt, resides in your current folder.

Read the entire file. The file name is the only required input argument to the
dlmread function. dlmread determines the delimiter from the formatting of
the file.

M = dlmread('num.txt')

M =

95 89 82 92

2-11



2 Text Files

23 76 45 74
61 46 61 18
49 2 79 41

M is a 4-by-4 double array containing the data from the file.

Read only the rectangular block of data beginning from the second row,
third column, in the file. When using dlmread, row and column indices are
zero-based. When you specify a specific range to read, you must also specify
the delimiter. Use '\t' to indicate a tab delimiter.

N = dlmread('num.txt','\t',1,2)

N =

45 74
61 18
79 41

dlmread returns a 3-by-2 double array.

Read only the first two columns. You can use spreadsheet notation to indicate
the range, in this case, 'A1..B4'.

P = dlmread('num.txt','\t','A1..B4')

P =

95 89
23 76
61 46
49 2

See Also csvread | dlmread

2-12



Import Mixed Text and Numeric Data from Text Files

Import Mixed Text and Numeric Data from Text Files

In this section...

“Read File with Column Names” on page 2-13

“Read File Without Column Names” on page 2-14

Read File with Column Names
This example shows how to use the readtable function to import a text file
with column and row headings.

Create a tab-delimited text file named grades.txt that contains the following
(copy and paste into a text editor):

Class Grades for Spring Term
Grade1 Grade2 Grade3

John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

This file contains one header line followed by a row of column names, Grade1,
Grade2, and Grade3.

Call readtable to read the file. Use the name-value pair argument,
HeaderLines, to specify one header line to ignore. Use the name-value pair
argument, Delimiter, to specify a tab delimiter.

T = readtable('grades.txt','HeaderLines',1,'Delimiter','\t')

T =

Var1 Grade1 Grade2 Grade3
________ ______ ______ ______

'John' 85 90 95
'Ann' 90 92 98

2-13



2 Text Files

'Martin' 100 95 97
'Rob' 77 86 93

readtable returns a 4-by-4 table. By default, readtable reads variable
names from the first row of the file following the header lines. Because the
first column of data in the file does not have text in the first row, readtable
assigns that variable the name, Var1.

Read the file again, this time reading the first column of data as row names.

T = readtable('grades.txt','HeaderLines',1,...
'Delimiter','\t','ReadRowNames',true)

T =

Grade1 Grade2 Grade3
______ ______ ______

John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

readtable returns a 4-by-3 table with row names and variable names.

Read File Without Column Names
This example shows how to use the readtable function to import a text file
with no column headings.

Create a text file named results.dat that contains the following (copy and
paste into a text editor):

Sally 09/12/2005 12.34 45 Yes
Larry 10/12/2005 34.56 54 Yes
Tommy 11/12/2005 67.89 23 No

This file contains data without any column names.

2-14



Import Mixed Text and Numeric Data from Text Files

Call readtable to read the file. By default, readtable treats the first
row in a file as variable names. Use the name-value pair argument,
ReadVariableNames, to tell readtable not to treat the first row in the file as
variable names.

T = readtable('results.dat','Delimiter',' ','ReadVariableNames',false)

T =

Var1 Var2 Var3 Var4 Var5
_______ ____________ _____ ____ _____

'Sally' '09/12/2005' 12.34 45 'Yes'
'Larry' '10/12/2005' 34.56 54 'Yes'
'Tommy' '11/12/2005' 67.89 23 'No'

readtable returns a 3-by-5 table and assigns default names to the table
variables.

View the values in the table variable, Var4, using dot notation.

T.Var3

ans =

45
54
23

See Also readtable

Concepts • “Access Data in a Table”

2-15



2 Text Files

Import Large Text File Data in Blocks
This example shows how to read small blocks of data from an arbitrarily
large delimited text file using the textscan function and avoid memory
errors. The first part of the example shows how to specify a constant block
size. The second part of the example shows how to read and process each
block of data in a loop.

Specify Block Size

Specify a constant block size, and then process each block of data within a loop.

Copy and paste the following text into a text editor to create a tab-delimited
text file, bigfile.txt, in your current folder.

## A ID = 02476
## YKZ Timestamp Temp Humidity Wind Weather
06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear
## B ID = 02477
## YVR Timestamp Temp Humidity Wind Weather
09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19.1 94 7 n/a
09-Sep-2013 09:00:00 18.5 94 4 fog
09-Sep-2013 13:00:00 20.1 81 15 mainly clear
09-Sep-2013 17:00:00 20.1 77 17 n/a
09-Sep-2013 18:00:00 20.0 75 17 n/a
09-Sep-2013 21:00:00 16.8 90 25 mainly clear
## C ID = 02478
## YYZ Timestamp Temp Humidity Wind Weather

This file has commented lines beginning with ## , throughout the file. The
data is arranged in five columns: The first column contains strings indicating
timestamps. The second, third, and fourth columns contain numeric data
indicating temperature, humidity and wind speed. The last column contains
descriptive strings.

2-16



Import Large Text File Data in Blocks

Define the size of each block to read from the text file. You do not need to
know the total number of blocks in advance, and the number of rows of data
in the file do not have to divide evenly into the block size.

Specify a block size of 5.

N = 5;

Open the file to read using the fopen function.

fileID = fopen('bigfile.txt');

fopen returns a file identifier, fileID, that the textscan function calls to
read from the file. fopen positions a pointer at the beginning of the file, and
each read operation changes the location of that pointer.

Describe each data field using format specifiers, such as '%s' for a string,
'%d' for an integer, or '%f' for a floating-point number.

formatSpec = '%s %f %f %f %s';

In a while loop, call textscan to read each block of data. The file identifier,
format specifer string, and the segment size (N), are the first three inputs to
textscan. Ignore the commented lines using the CommentStyle name-value
pair argument. Specify the tab delimiter using the Delimiter name-value
pair argument. Then, process the data in the block. In this example, call
scatter to display a scatter plot of temperature and humidity values in the
block. The commands within the loop execute while the file pointer is not
at the end of the file.

k = 0;
while ~feof(fileID)

k = k+1;
C = textscan(fileID,formatSpec,N,'CommentStyle','##','Delimiter','\t');
figure, scatter(C{2},C{3}), title(['Temperature and Humidity, Block ',num2s
end

2-17



2 Text Files

2-18



Import Large Text File Data in Blocks

2-19



2 Text Files

textscan reads data from bigfile.txt indefinitely, until it reaches the end
of the file or until it cannot read a block of data in the format specified by
formatSpec. For each complete block, textscan returns a 1-by-5 cell array.
Because the sample file, bigfile.txt, contains 13 rows of data, textscan
returns only 3 rows in the last block.

View the temperature values in the last block returned by textscan.

C{2}

ans =

20.1000

2-20



Import Large Text File Data in Blocks

20.0000
16.8000

Close the file.

fclose(fileID);

Read Data with Arbitrary Block Sizes

Read and process separately each block of data between commented lines in
the file, bigfile.txt. The length of each block can be arbitrary. However,
you must specify the number of lines to skip between blocks of data. In
bigfile.txt, each block of data is preceded by two lines of comments.

Open the file for reading.

fileID = fopen('bigfile.txt');

Specify the format of the data you want to read. Tell textscan to ignore
certain data fields by including %* in the format specifier string, formatSpec.
In this example, skip the third and fourth columns of floating-point data
using '%*f'.

formatSpec = '%s %f %*f %*f %s';

Read a block of data in the file. Use the HeaderLines name-value pair
argument to instruct textscan to skip two lines before reading data.

D = textscan(fileID,formatSpec,'HeaderLines',2,'Delimiter','\t')

D =

{7x1 cell} [6x1 double] {6x1 cell}

textscan returns a 1-by-3 cell array, D.

View the contents of the first cell in D.

D{1,1}

ans =

2-21



2 Text Files

'06-Sep-2013 01:00:00'
'06-Sep-2013 05:00:00'
'06-Sep-2013 09:00:00'
'06-Sep-2013 13:00:00'
'06-Sep-2013 17:00:00'
'06-Sep-2013 21:00:00'
'## B'

textscan stops reading after the text, '## B', because it cannot read the
subsequent text as a number, as specified by formatSpec. The file pointer
remains at the position where textscan terminated.

Process the first block of data. In this example, find the maximum
temperature value in the second cell of D.

maxTemp1 = max(D{1,2})

maxTemp1 =

22.4000

Repeat the call to textscan to read the next block of data.

D = textscan(fileID,formatSpec,'HeaderLines',2,'Delimiter','\t')

D =

{8x1 cell} [7x1 double] {7x1 cell}

Again, textscan returns a 1-by-3 cell array.

Find the maximum temperature value in this block of data.

maxTemp2 = max(D{1,2})

maxTemp2 =

20.1000

Close the file.

fclose(fileID);

2-22



Import Large Text File Data in Blocks

See Also textscan | fopen

Concepts • “Access Data in a Cell Array”
• “Moving within a File” on page 4-15

2-23



2 Text Files

Import Data from a Nonrectangular Text File
This example shows how to import data from a nonrectangular file using the
textscan function. When using textscan, your data does not have to be in a
regular pattern of columns and rows, but it must be in a repeated pattern.

Create a file named nonrect.dat that contains the following (copy and paste
into a text editor):

begin
v1=12.67
v2=3.14
v3=6.778
end
begin
v1=21.78
v2=5.24
v3=9.838
end

Open the file to read using the fopen function.

fileID = fopen('nonrect.dat');

fopen returns a file identifier, fileID, that textscan calls to read from the
file.

Describe the pattern of the file data using format specifiers and delimiter
parameters. Typical format specifiers include '%s' for a string, '%d' for an
integer, or '%f' for a floating-point number. To import nonrect.dat, use the
format specifier '%*s' to tell textscan to skip the strings begin and end.
Include the literals 'v1=', 'v2=', and 'v3=' as part of the format specifiers,
so that textscan ignores those strings as well.

formatSpec = '%*s v1=%f v2=%f v3=%f %*s';

Import the data using textscan. Pass the file identifier and formatSpec
as inputs. Since each data field is on a new line, the delimiter is a newline
character ('\n'). To combine all the floating-point data into a single array,
set the CollectOutput name-value pair argument to true.

2-24



Import Data from a Nonrectangular Text File

C = textscan(fileID,formatSpec,...
'Delimiter', '\n', ...
'CollectOutput', true)

C =

[2x3 double]

textscan returns the cell array, C.

Close the file.

fclose(fileID);

View the contents of C.

celldisp(C)

C{1} =

12.6700 3.1400 6.7780
21.7800 5.2400 9.8380

See Also textscan

Concepts • “Access Data in a Cell Array”

2-25



2 Text Files

Write to Delimited Data Files

In this section...

“Export Numeric Array to ASCII File” on page 2-26

“Export Table to Text File” on page 2-28

“Export Cell Array to Text File” on page 2-29

Export Numeric Array to ASCII File

• “Export Numeric Array to ASCII File Using save” on page 2-26

• “Export Numeric Array to ASCII File Using dlmwrite” on page 2-27

To export a numeric array as a delimited ASCII data file, you can use either
the save function, specifying the -ASCII qualifier, or the dlmwrite function.

Both save and dlmwrite are easy to use. With dlmwrite, you can specify any
character as a delimiter, and you can export subsets of an array by specifying
a range of values.

However, save -ascii and dlmwrite do not accept cell arrays as input. To
create a delimited ASCII file from the contents of a cell array, you can first
convert the cell array to a matrix using the cell2mat function, and then call
save or dlmwrite. Use this approach when your cell array contains only
numeric data, and easily translates to a two-dimensional numeric array.

Export Numeric Array to ASCII File Using save
To export the array A, where

A = [ 1 2 3 4 ; 5 6 7 8 ];

to a space-delimited ASCII data file, use the save function as follows:

save my_data.out A -ASCII

To view the file, use the type function:

type my_data.out

2-26



Write to Delimited Data Files

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

When you use save to write a character array to an ASCII file, it writes the
ASCII equivalent of the characters to the file. For example, if you write the
character string 'hello' to a file, save writes the values

104 101 108 108 111

to the file in 8-digit ASCII format.

To write data in 16-digit format, use the -double option. To create a
tab-delimited file instead of a space-delimited file, use the -tabs option.

Export Numeric Array to ASCII File Using dlmwrite
To export a numeric or character array to an ASCII file with a specified
delimiter, use the dlmwrite function.

For example, to export the array A,

A = [ 1 2 3 4 ; 5 6 7 8 ];

to an ASCII data file that uses semicolons as a delimiter, use this command:

dlmwrite('my_data.out',A, ';')

To view the file, use the type function:

type my_data.out

1;2;3;4
5;6;7;8

By default, dlmwrite uses a comma as a delimiter. You can specify a space
(' ') or other character as a delimiter. To specify no delimiter, use empty
quotation marks ('').

2-27



2 Text Files

Export Table to Text File
This example shows how to export a table to a text file, using the writetable
function.

Create a sample table, T, for exporting.

Name = {'M4';'M5';'M6';'M8';'M10'};
Pitch = [0.7;0.8;1;1.25;1.5];
Shape = {'Pan';'Round';'Button';'Pan';'Round'};
Price = [10.0;13.59;10.50;12.00;16.69];
Stock = [376;502;465;1091;562];
T = table(Pitch,Shape,Price,Stock,'RowNames',Name)

T =

Pitch Shape Price Stock
_____ ________ _____ _____

M4 0.7 'Pan' 10 376
M5 0.8 'Round' 13.59 502
M6 1 'Button' 10.5 465
M8 1.25 'Pan' 12 1091
M10 1.5 'Round' 16.69 562

The table has both column headings and row names.

Export the table, T, to a text file named tabledata.txt.

writetable(T,'tabledata.txt')

View the file.

type tabledata.txt

Pitch,Shape,Price,Stock
0.7,Pan,10,376
0.8,Round,13.59,502

2-28



Write to Delimited Data Files

1,Button,10.5,465
1.25,Pan,12,1091
1.5,Round,16.69,562

By default, writetable writes comma-separated data, includes table variable
names as column headings, and does not write row names.

Export table T to a tab-delimited text file named tabledata2.txt and
write the row names in the first column of the output. Use the Delimiter
name-value pair argument to specify a tab delimiter, and the WriteRowNames
name-value pair argument to include row names.

writetable(T,'tabledata2.txt','Delimiter','\t','WriteRowNames',true)

View the file.

type tabledata2.txt

Row Pitch Shape Price Stock
M4 0.7 Pan 10 376
M5 0.8 Round 13.59 502
M6 1 Button 10.5 465
M8 1.25 Pan 12 1091
M10 1.5 Round 16.69 562

Export Cell Array to Text File

Export Cell Array Using fprintf

This example shows how to export a cell array to a text file, using the fprintf
function.

Create a sample cell array, C, for exporting.

C = {'Atkins',32,77.3,'M';'Cheng',30,99.8,'F';'Lam',31,80.2,'M'}

C =

'Atkins' [32] [77.3000] 'M'

2-29



2 Text Files

'Cheng' [30] [99.8000] 'F'
'Lam' [31] [80.2000] 'M'

Open a file named celldata.dat for writing.

fileID = fopen('celldata.dat','w');

fopen returns a file identifier, fileID, that fprintf calls to write to the file.

Describe the pattern of the file data using format specifiers. Typical format
specifiers include '%s' for a string, '%d' for an integer, or '%f' for a
floating-point number. Separate each format specifier with a space to indicate
a space delimiter for the output file. Include a newline character at the end
of each row of data ('\n').

formatSpec = '%s %d %2.1f %s\n';

Some Windows® text editors, including Microsoft® Notepad, require a
newline character sequence of '\r\n' instead of '\n'. However, '\n' is
sufficient for Microsoft Word or WordPad.

Determine the size of C. Then, export one row of data at a time using the
fprintf function.

[nrows,ncols] = size(C);
for row = 1:nrows
fprintf(fileID,formatSpec,C{row,:});
end

fprintf writes a space-delimited file.

Close the file.

fclose(fileID);

View the file.

type celldata.dat

2-30



Write to Delimited Data Files

Atkins 32 77.3 M
Cheng 30 99.8 F
Lam 31 80.2 M

Convert Cell Array to Table for Export

This example shows how to convert a cell array of mixed text and numeric
data to a table before writing the data to a text file. Tables are suitable for
column-oriented or tabular data. You then can write the table to a text file
using the writetable function.

Convert the cell array, C, from the previous example, to a table using the
cell2table function. Add variable names to each column of data using the
VariableNames name-value pair argument.

T = cell2table(C,'VariableNames',{'Name','Age','Result','Gender'});

Write table T to a text file.

writetable(T,'tabledata.dat');

View the file.

type tabledata.dat

Name,Age,Result,Gender
Atkins,32,77.3,M
Cheng,30,99.8,F
Lam,31,80.2,M

See Also fprintf | type | writetable | save | dlmwrite

2-31



2 Text Files

Write to a Diary File
To keep an activity log of your MATLAB session, use the diary function.
diary creates a verbatim copy of your MATLAB session in a disk file
(excluding graphics).

For example, if you have the array A in your workspace,

A = [ 1 2 3 4; 5 6 7 8 ];

execute these commands at the MATLAB prompt to export this array using
diary:

1 Turn on the diary function. Optionally, you can name the output file diary
creates:

diary my_data.out

2 Display the contents of the array you want to export. This example displays
the array A. You could also display a cell array or other MATLAB class:

A =
1 2 3 4
5 6 7 8

3 Turn off the diary function:

diary off

diary creates the file my_data.out and records all the commands executed in
the MATLAB session until you turn it off:

A =

1 2 3 4
5 6 7 8

diary off

4 Open the diary file my_data.out in a text editor and remove the extraneous
text, if desired.

2-32



3

Spreadsheets

• “Ways to Import Spreadsheets” on page 3-2

• “Select Spreadsheet Data Using Import Tool” on page 3-4

• “Import a Worksheet or Range” on page 3-8

• “Import All Worksheets from a File” on page 3-12

• “System Requirements for Importing Spreadsheets” on page 3-15

• “When to Convert Dates from Excel Files” on page 3-16

• “Export to Excel Spreadsheets” on page 3-19



3 Spreadsheets

Ways to Import Spreadsheets

In this section...

“Import Data from Spreadsheets” on page 3-2

“Paste Data from Clipboard” on page 3-3

Import Data from Spreadsheets
You can import data from spreadsheet files into MATLAB interactively, using
the Import Tool, or programmatically, using an import function.

This table compares the primary import options for spreadsheet files.

Import Option Description For More
Information, See...

Import Tool Import a worksheet
or range to column
vectors, a matrix, a cell
array, or a table. You
can generate code to
repeat the operation on
multiple similar files.

“Select Spreadsheet
Data Using Import
Tool” on page 3-4

readtable Import a worksheet or
range to a table.

xlsread Import a worksheet or
range to numeric and
cell arrays.

“Import a Worksheet or
Range” on page 3-8

importdata Import one or more
worksheets in a file to a
structure array.

“Import All Worksheets
from a File” on page
3-12

Some import options require that your system includes Excel for Windows.
For more information, see “System Requirements for Importing Spreadsheets”
on page 3-15.

3-2



Ways to Import Spreadsheets

Paste Data from Clipboard
Paste data from the clipboard into MATLAB using one of the following
methods:

• On the Workspace browser title bar, click , and then select Paste.

• Open an existing variable in the Variables editor, right-click, and then
select Paste Excel Data.

• Call uiimport -pastespecial.

3-3



3 Spreadsheets

Select Spreadsheet Data Using Import Tool

In this section...

“Select Data Interactively” on page 3-4

“Import Data from Multiple Spreadsheets” on page 3-6

Select Data Interactively
This example shows how to import data from a spreadsheet into the
workspace with the Import Tool. The worksheet in this example includes
three columns of data labeled Station, Temp, and Date:

Station Temp Date
12 98 9/22/2010
13 x 10/23/2010
14 97 12/1/2010

On the Home tab, in the Variable section, click Import Data .
Alternatively, in the Current Folder browser, double-click the name of a file
with an extension of .xls, .xlsx, .xlsb, or .xlsm. The Import Tool opens.

Select the data you want to import. In the Imported Data section, select how
you want the data to be imported. The following table indicates how data is
imported depending on the option you select.

Option Selected How Data is Imported

Column vectors Import each column of the selected
data as an individual m-by-1 vector.

Matrix Import selected data as an m-by-n
numeric array.

Cell Array Import selected data as a cell array
that can contain multiple data types,
such as numeric data and text.

Table Import selected data as a table.

3-4



Select Spreadsheet Data Using Import Tool

For example, the data in the following figure corresponds to a 3-by-3 matrix
named untitled. You can edit the variable name within the tab, and you can
select noncontiguous sections of data for the same variable.

If you choose to import as a matrix or numeric column vectors, the tool
highlights any nonnumeric data in the worksheet. Each highlight color
corresponds to a proposed rule to make the data fit into a numeric array. For
example, you can convert spreadsheet dates to MATLAB serial date numbers.
You can see how your data will be imported when you place the cursor over
individual cells.

You can add, remove, reorder, or edit rules, such as changing the replacement
value from NaN to another value. All rules apply to the imported data only,
and do not change the data in the file. You must specify rules any time
the range includes nonnumeric data and you are importing into a matrix
or numeric column vectors.

Any cells that contain #Error? correspond to formula errors in your
spreadsheet file, such as division by zero. The Import Tool regards these
cells as nonnumeric.

When you click the Import Selection button , the Import Tool creates
variables in your workspace.

3-5



3 Spreadsheets

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Spreadsheets
If you plan to perform the same import operation on multiple files, you can
generate code from the Import Tool to make it easier to repeat the operation.
On all platforms, the Import Tool can generate a program script that you can
edit and run to import the files. On Microsoft Windows systems with Excel
software, the Import Tool can generate a function that you can call for each
file.

For example, suppose you have a set of spreadsheets in the current folder
named myfile01.xlsx through myfile25.xlsx, and you want to import the
same range of data, A2:G100, from the first worksheet in each file. Generate
code to import the entire set of files as follows:

1 Open one of the files in the Import Tool.

2 From the Import button, select Generate Function. The Import Tool
generates code similar to the following excerpt, and opens the code in the
Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet
...

3 Save the function.

4 In a separate program file or at the command line, create a for loop to
import data from each spreadsheet into a cell array named myData:

numFiles = 25;
range = 'A2:G100';
sheet = 1;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
fileName = sprintf('myfile%02d.xlsx',fileNum);
myData{fileNum} = importfile(fileName,sheet,range);

end

3-6



Select Spreadsheet Data Using Import Tool

Each cell in myData contains an array of data from the corresponding
worksheet. For example, myData{1} contains the data from the first file,
myfile01.xlsx.

3-7



3 Spreadsheets

Import a Worksheet or Range

In this section...

“Read Column-Oriented Data into Table” on page 3-8

“Read Numeric and Text Data into Arrays” on page 3-9

“Get Information about a Spreadsheet” on page 3-11

Read Column-Oriented Data into Table
This example shows how to import mixed numeric and text data from a
spreadsheet into a table, using the readtable function. Tables are suitable
for column-oriented or tabular data. You can store variable names or row
names along with the data in a single container.

This example uses a sample spreadsheet file, climate.xlsx, that contains
the following numeric and text data in a worksheet called Temperatures.

Time Temp Visibility
12 98 clear
13 99 clear
14 97 partly cloudy

Create the sample file for reading.

d = {'Time','Temp','Visibility';
12 98 'clear';
13 99 'clear';
14 97 'partly cloudy'};

xlswrite('climate.xlsx',d,'Temperatures');

xlswrite warns that it has added a worksheet.

Call readtable to read all the data in the worksheet called Temperatures.
Specify the worksheet name using the Sheet name-value pair argument. If
your data is on the first worksheet in the file, you do not need to specify Sheet.

T = readtable('climate.xlsx','Sheet','Temperatures')

3-8



Import a Worksheet or Range

T =

Time Temp Visibility
____ ____ _______________

12 98 'clear'
13 99 'clear'
14 97 'partly cloudy'

readtable returns a 3-by-3 table. By default, readtable reads the first row
of the worksheet as variable names for the table.

Read only the first two columns of data by specifying a range, 'A1:B4'.

cols = readtable('climate.xlsx','Sheet','Temperatures','Range','A1:B4')

cols =

Time Temp
____ ____

12 98
13 99
14 97

readtable returns a 3-by-2 table.

Read Numeric and Text Data into Arrays
This example shows how to import mixed numeric and text data into separate
arrays in MATLAB, using the xlsread function.

This example uses a sample spreadsheet file, climate.xlsx, that contains
the following data in a worksheet called Temperatures.

Time Temp
12 98
13 99
14 97

Create the sample file for reading.

3-9



3 Spreadsheets

d = {'Time', 'Temp';
12 98;
13 99;
14 97}

xlswrite('climate2.xlsx',d,'Temperatures');

xlswrite warns that it has added a worksheet.

Import only the numeric data into a matrix, using xlsread with a single
output argument. xlsread ignores any leading row or column of text in the
numeric result.

num = xlsread('climate2.xlsx','Temperatures')

num =
12 98
13 99
14 97

xlsread returns the numeric array, num.

Alternatively, import both numeric data and text data, by specifying two
output arguments in the call to xlsread.

[num,headertext] = xlsread('climate2.xlsx','Temperatures')

num =
12 98
13 99
14 97

headertext =
'Time' 'Temp'

xlsread returns the numeric data in the array, num, and the text data in
the cell array, headertext.

Read only the first row of data by specifying a range, 'A2:B2'.

row1 = xlsread('climate2.xlsx','Temperatures','A2:B2')

3-10



Import a Worksheet or Range

row1 =
12 98

Get Information about a Spreadsheet
To determine whether a file contains a readable Excel spreadsheet, use the
xlsfinfo function. For readable files, xlsfinfo returns a nonempty string,
such as 'Microsoft Excel Spreadsheet'. Otherwise, it returns an empty
string ('').

You also can use xlsfinfo to identify the names of the worksheets in the
file, and to obtain the file format reported by Excel. For example, retrieve
information about the spreadsheet file, climate2.xlsx, created in the
previous example:

[type, sheets] = xlsfinfo('climate2.xlsx')

type =
Microsoft Excel Spreadsheet
sheets =

'Sheet1' 'Sheet2' 'Sheet3' 'Temperatures'

See Also xlsfinfo | xlsread | readtable

Concepts • “When to Convert Dates from Excel Files” on page 3-16
• “Access Data in a Table”

3-11



3 Spreadsheets

Import All Worksheets from a File

In this section...

“Import Numeric Data from All Worksheets” on page 3-12

“Import Data and Headers from All Worksheets” on page 3-12

Import Numeric Data from All Worksheets
This example shows how to import worksheets in an Excel file that contains
only numeric data (no row or column headers, and no inner cells with text)
into a structure array, using the importdata function.

Create a sample spreadsheet file for importing by writing an array of numeric
data to the first and second worksheets in a file called numdata.xlsx.

xlswrite('numdata.xlsx',rand(5,5),1);
xlswrite('numdata.xlsx',rand(5,6),2);

Import the data from all worksheets in numdata.xlsx.

S = importdata('numdata.xlsx')

S =

Sheet1: [5x5 double]
Sheet2: [5x6 double]

importdata returns a structure array, S, with one field for each worksheet
with data.

Import Data and Headers from All Worksheets
This example shows how to read numeric data and text headers from
all worksheets in an Excel file into a nested structure array, using the
importadata function.

This example uses a sample spreadsheet file, testdata.xlsx, that contains
the following data in the first worksheet, and similar data in the second
worksheet.

3-12



Import All Worksheets from a File

Time Temp
12 98
13 99
14 97

Write a sample file, testdata.xlsx, for reading. Write an array of sample
data, d1, to the first worksheet in the file and a second array, d2, to the
second worksheet.

d1 = {'Time','Temp';
12 98;
13 99;
14 97};

d2 = {'Time','Temp';
12 78;
13 77;
14 78};

xlswrite('testdata.xlsx',d1,1);
xlswrite('testdata.xlsx',d2,2);

Read the data from all worksheets in testdata.xlsx.

climate = importdata('testdata.xlsx')

climate =

data: [1x1 struct]
textdata: [1x1 struct]

colheaders: [1x1 struct]

importdata returns a nested structure array, climate, with three fields,
data, textdata, and colheaders. Structures created from Excel files with
row headers include the field rowheaders instead of colheaders.

View the contents of the structure array named data.

climate.data

ans =

3-13



3 Spreadsheets

Sheet1: [3x2 double]
Sheet2: [3x2 double]

climate.data contains one field for each worksheet with numeric data.

View the data in the worksheet named Sheet1.

climate.data.Sheet1

ans =

12 98
13 99
14 97

The field, Sheet1, contains the numeric data from the first worksheet in the
file.

View the column headers in each sheet.

headers = climate.colheaders

headers =

Sheet1: {'Time' 'Temp'}
Sheet2: {'Time' 'Temp'}

Both the worksheets named Sheet1 and Sheet2 have the column headers,
Time and Temp.

See Also importdata

Concepts • “When to Convert Dates from Excel Files” on page 3-16

3-14



System Requirements for Importing Spreadsheets

System Requirements for Importing Spreadsheets

In this section...

“Importing Spreadsheets with Excel for Windows” on page 3-15

“Importing Spreadsheets Without Excel for Windows” on page 3-15

Importing Spreadsheets with Excel for Windows
If your system has Excel for Windows installed, including the COM server
(part of the typical installation of Excel):

• All MATLAB import options support XLS, XLSX, XLSB, XLSM, XLTM,
and XLTX formats.

• xlsread also imports HTML-based formats.

• xlsread includes an option to open Excel and select the range of data
interactively. To use this option, call xlsread with the following syntax:

mydata = xlsread(filename, -1)

• If you have Excel 2003 installed, but want to read a 2007 format (such as
XLSX, XLSB, or XLSM), install the Office 2007 Compatibility Pack.

• If you have Excel 2010, all MATLAB import options support ODS files.

Note Large files in XLSX format sometimes load slowly. For better import
and export performance, Microsoft recommends that you use the XLSB format.

Importing Spreadsheets Without Excel for Windows
If your system does not have Excel for Windows installed, or the COM server
is not available:

• All MATLAB import options read XLS, XLSX, XLSM, XLTM, and XLTX
files.

3-15



3 Spreadsheets

When to Convert Dates from Excel Files

In this section...

“MATLAB and Excel Dates” on page 3-16

“Import an Excel File with Numeric Dates” on page 3-17

“Export to an Excel File with Numeric Dates” on page 3-18

MATLAB and Excel Dates
Both MATLAB and Excel applications can represent dates as character
strings or numeric values. For example, May 31, 2009, can be represented
as the character string '05/31/09' or as the numeric value 733924. Within
MATLAB, the datestr and datenum functions allow you to easily convert
between string and numeric representations.

You must convert dates when:

• Importing any Excel file on a system without Excel for Windows

• Importing a spreadsheet with dates stored as numbers using xlsread or
importdata

• Exporting an array or table with dates stored as numbers

You do not need to convert dates when:

• Importing a spreadsheet using the Import Tool

• Importing a spreadsheet with dates stored as strings on a system with
Excel for Windows

• Exporting an array or table with dates stored as strings

Both Excel and MATLAB represent numeric dates as a number of serial days
elapsed from a specific reference date, but the applications use different
reference dates.

The following table lists the reference dates for MATLAB and Excel. For more
information on the 1900 and 1904 date systems, see the Excel help.

3-16



When to Convert Dates from Excel® Files

Application Reference Date

MATLAB January 0, 0000

Excel for Windows January 1, 1900

Excel for the Macintosh January 2, 1904

Import an Excel File with Numeric Dates
Consider the hypothetical file weight_log.xls with

Date Weight
10/31/96 174.8
11/29/96 179.3
12/30/96 190.4
01/31/97 185.7

To import this file, first convert the dates within Excel to a numeric format.
In Windows, the file now appears as

Date Weight
35369 174.8
35398 175.3
35429 190.4
35461 185.7

Import the file:

wt = xlsread('weight_log.xls');

Convert the dates to the MATLAB reference date. If the file uses the 1900
date system (the default in Excel for Windows):

datecol = 1;
wt(:,datecol) = wt(:,datecol) + datenum('30-Dec-1899');

If the file uses the 1904 date system (the default in Excel for the Macintosh):

datecol = 1;
wt(:,datecol) = wt(:,datecol) + datenum('01-Jan-1904');

3-17



3 Spreadsheets

Export to an Excel File with Numeric Dates
Consider a numeric matrix wt_log. The first column contains numeric dates,
and the second column contains weights:

wt_log = [729698 174.8; ...
729726 175.3; ...
729760 190.4; ...
729787 185.7];

% To view the dates before exporting, call datestr:
datestr(wt_log(:,1))

The formatted dates returned by datestr are:

04-Nov-1997
02-Dec-1997
05-Jan-1998
01-Feb-1998

To export the numeric matrix to Excel for Windows (and use the default 1900
date system), convert the dates:

datecol = 1;
wt_log(:,datecol) = wt_log(:,datecol) - datenum('30-Dec-1899');
xlswrite('new_log.xls', wt_log);

To export for use in Excel for the Macintosh (with the default 1904 date
system), convert as follows:

datecol = 1;
wt_log(:,datecol) = wt_log(:,datecol) - datenum('01-Jan-1904');
xlswrite('new_log.xls', wt_log);

3-18



Export to Excel® Spreadsheets

Export to Excel Spreadsheets

In this section...

“Write Tabular Data to Spreadsheet File” on page 3-19

“Write Numeric and Text Data to Spreadsheet File” on page 3-20

“Disable Warning When Adding New Worksheet” on page 3-21

“Supported Excel File Formats” on page 3-21

“Format Cells in Excel Files” on page 3-21

Write Tabular Data to Spreadsheet File
This example shows how to export a table in the workspace to a Microsoft
Excel spreadsheet file, using the writetable function. You can export data
from the workspace to any worksheet in the file, and to any location within
that worksheet. By default, writetable writes your table data to the first
worksheet in the file, starting at cell A1.

Create a sample table of column-oriented data and display the first five rows.

load patients.mat
T = table(LastName,Age,Weight,Smoker);
T(1:5,:)

ans =

LastName Age Weight Smoker
__________ ___ ______ ______

'Smith' 38 176 true
'Johnson' 43 163 false
'Williams' 38 131 false
'Jones' 40 133 false
'Brown' 49 119 false

Write table T to the first sheet in a new spreadsheet file named
patientdata.xlsx, starting at cell D1. Specify the portion of the worksheet to
write to, using the Range name-value pair argument.

3-19



3 Spreadsheets

filename = 'patientdata.xlsx';
writetable(T,filename,'Sheet',1,'Range','D1')

By default, writetable writes the table variable names as column headings
in the spreadsheet file.

Write table T to the second sheet in the file, but do not write the table variable
names.

writetable(T,filename,'Sheet',2,'WriteVariableNames',false)

Write Numeric and Text Data to Spreadsheet File
This example shows how to export a numeric array and a cell array to a
Microsoft Excel spreadsheet file, using the xlswrite function. You can export
data in individual numeric and text workspace variables to any worksheet
in the file, and to any location within that worksheet. By default, xlswrite
writes your matrix data to the first worksheet in the file, starting at cell A1.

Create a sample array of numeric data, A, and a sample cell array of text
and numeric data, C.

A = magic(5)
C = {'Time', 'Temp'; 12 98; 13 'x'; 14 97}

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

C =

'Time' 'Temp'
[ 12] [ 98]
[ 13] 'x'
[ 14] [ 97]

3-20



Export to Excel® Spreadsheets

Write array A to the 5-by-5 rectangular region, E1:I5, on the first sheet in a
new spreadsheet file named testdata.xlsx.

filename = 'testdata.xlsx';
xlswrite(filename,A,1,'E1:I5')

Write the cell array, C, to a rectangular region that starts at cell B2 on a
worksheet named Temperatures in the file. When you specify the sheet, you
can specify a range using only the first cell.

xlswrite(filename,C,'Temperatures','B2');

xlswrite displays a warning because the worksheet, Temperatures, does
not already exist in the file.

Disable Warning When Adding New Worksheet
If the target worksheet does not already exist in the file, the writetable and
xlswrite functions display the following warning:

Warning: Added specified worksheet.

You can disable these warnings with this command:

warning('off','MATLAB:xlswrite:AddSheet')

Supported Excel File Formats
writetable and xlswrite can write to any file format recognized by your
version of Excel for Windows. If you have Excel 2003 installed, but want to
write to a 2007 format (such as XLSX, XLSB, or XLSM), you must install
the Office 2007 Compatibility Pack.

Note If you are using a system that does not have Excel for Windows
installed, writetable and xlswrite write data to a comma-separated value
(CSV) file.

Format Cells in Excel Files
To write data to Excel files on Windows systems with custom formats (such
as fonts or colors), access the COM server directly using actxserver rather

3-21



3 Spreadsheets

than writetable or xlswrite. For example, Technical Solution 1-QLD4K
uses actxserver to establish a connection between MATLAB and Excel, write
data to a worksheet, and specify the colors of the cells.

For more information, see “Getting Started with COM”.

See Also xlswrite | writetable

Concepts • “When to Convert Dates from Excel Files” on page 3-16

3-22

http://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K


4

Low-Level File I/O

• “Import Text Data Files with Low-Level I/O” on page 4-2

• “Import Binary Data with Low-Level I/O” on page 4-11

• “Export to Text Data Files with Low-Level I/O” on page 4-19

• “Export Binary Data with Low-Level I/O” on page 4-26



4 Low-Level File I/O

Import Text Data Files with Low-Level I/O

In this section...

“Overview” on page 4-2

“Reading Data in a Formatted Pattern” on page 4-3

“Reading Data Line-by-Line” on page 4-6

“Testing for End of File (EOF)” on page 4-7

“Opening Files with Different Character Encodings” on page 4-9

Overview
Low-level file I/O functions allow the most control over reading or writing
data to a file. However, these functions require that you specify more detailed
information about your file than the easier-to-use high-level functions, such as
importdata. For more information on the high-level functions that read text
files, see “Ways to Import Text Files” on page 2-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file
you can view in a text editor. For more information, see “Reading Data in
a Formatted Pattern” on page 4-3.

• fgetl and fgets, which read one line of a file at a time, where a newline
character separates each line. For more information, see “Reading Data
Line-by-Line” on page 4-6.

• fread, which reads a stream of data at the byte or bit level. For more
information, see “Import Binary Data with Low-Level I/O” on page 4-11.

For additional information, see:

• “Testing for End of File (EOF)” on page 4-7

• “Opening Files with Different Character Encodings” on page 4-9

4-2



Import Text Data Files with Low-Level I/O

Note The low-level file I/O functions are based on functions in the ANSI®

Standard C Library. However, MATLAB includes vectorized versions of the
functions, to read and write data in an array with minimal control loops.

Reading Data in a Formatted Pattern
To import text files that importdata and textscan cannot read, consider
using fscanf. The fscanf function requires that you describe the format of
your file, but includes many options for this format description.

For example, create a text file mymeas.dat as shown. The data in mymeas.dat
includes repeated sets of times, dates, and measurements. The header text
includes the number of sets of measurements, N:

Measurement Data
N=3

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46
15:03:40
15-Apr-2003
7.09 6.55 9.59 7.51
7.54 1.62 3.40 2.55
NaN 1.19 5.85 5.05
6.79 4.98 2.23 6.99

4-3



4 Low-Level File I/O

Opening the File
As with any of the low-level I/O functions, before reading, open the file with
fopen, and obtain a file identifier. By default, fopen opens files for read
access, with a permission of 'r'.

When you finish processing the file, close it with fclose(fid).

Describing the Data
Describe the data in the file with format specifiers, such as '%s' for a string,
'%d' for an integer, or '%f' for a floating-point number. (For a complete list
of specifiers, see the fscanf reference page.)

To skip literal characters in the file, include them in the format description.
To skip a data field, use an asterisk ('*') in the specifier.

For example, consider the header lines of mymeas.dat:

Measurement Data % skip 2 strings, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n

% go to next line: \n
12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
...

To read the headers and return the single value for N:

N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

Specifying the Number of Values to Read
By default, fscanf reapplies your format description until it cannot match
the description to the data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not
attempt to read the entire file. For example, in mymeas.dat, each set of
measurements includes a fixed number of rows and columns:

measrows = 4;

4-4



Import Text Data Files with Low-Level I/O

meascols = 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

Creating Variables in the Workspace
There are several ways to store mymeas.dat in the MATLAB workspace. In
this case, read the values into a structure. Each element of the structure has
three fields: mtime, mdate, and meas.

Note fscanf fills arrays with numeric values in column order. To make
the output array match the orientation of numeric data in a file, transpose
the array.

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% read the file headers, find N (one value)
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

% read each set of measurements
for n = 1:N

mystruct(n).mtime = fscanf(fid, '%s', 1);
mystruct(n).mdate = fscanf(fid, '%s', 1);

% fscanf fills the array in column order,
% so transpose the results
mystruct(n).meas = ...

fscanf(fid, '%f', [measrows, meascols])';
end

% close the file
fclose(fid);

4-5



4 Low-Level File I/O

Reading Data Line-by-Line
MATLAB provides two functions that read lines from files and store them
in string vectors: fgetl and fgets. The fgets function copies the newline
character to the output string, but fgetl does not.

The following example uses fgetl to read an entire file one line at a time.
The function litcount determines whether an input literal string (literal)
appears in each line. If it does, the function prints the entire line preceded by
the number of times the literal string appears on the line.

function y = litcount(filename, literal)
% Search for number of string matches per line.

fid = fopen(filename);
y = 0;
tline = fgetl(fid);
while ischar(tline)

matches = strfind(tline, literal);
num = length(matches);
if num > 0

y = y + num;
fprintf(1,'%d:%s\n',num,tline);

end
tline = fgetl(fid);

end
fclose(fid);

Create an input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times the string 'an' appears in this file, call litcount:

litcount('badpoem','an')

This returns:

2: Oranges and lemons,

4-6



Import Text Data Files with Low-Level I/O

1: Pineapples and tea.
3: Orangutans and monkeys,
ans =

6

Testing for End of File (EOF)
When you read a portion of your data at a time, you can use feof to check
whether you have reached the end of the file. feof returns a value of 1 when
the file pointer is at the end of the file. Otherwise, it returns 0.

Note Opening an empty file does not move the file position indicator to the
end of the file. Read operations, and the fseek and frewind functions, move
the file position indicator.

Testing for EOF with feof
When you use textscan, fscanf, or fread to read portions of data at a time,
use feof to check whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas.dat has the following
form, with no information about the number of measurement sets. Read the
data into a structure with fields for mtime, mdate, and meas:

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46

To read the file:

4-7



4 Low-Level File I/O

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% make sure the file is not empty
finfo = dir(filename);
fsize = finfo.bytes;

if fsize > 0

% read the file
block = 1;
while ~feof(fid)

mystruct(block).mtime = fscanf(fid, '%s', 1);
mystruct(block).mdate = fscanf(fid, '%s', 1);

% fscanf fills the array in column order,
% so transpose the results
mystruct(block).meas = ...

fscanf(fid, '%f', [measrows, meascols])';

block = block + 1;
end

end

% close the file
fclose(fid);

Testing for EOF with fgetl and fgets
If you use fgetl or fgets in a control loop, feof is not always the best way to
test for end of file. As an alternative, consider checking whether the value
that fgetl or fgets returns is a character string.

For example, the function litcount described in “Reading Data Line-by-Line”
on page 4-6 includes the following while loop and fgetl calls :

4-8



Import Text Data Files with Low-Level I/O

y = 0;
tline = fgetl(fid);
while ischar(tline)

matches = strfind(tline, literal);
num = length(matches);
if num > 0

y = y + num;
fprintf(1,'%d:%s\n',num,tline);

end
tline = fgetl(fid);

end

This approach is more robust than testing ~feof(fid) for two reasons:

• If fgetl or fgets find data, they return a string. Otherwise, they return
a number (-1).

• After each read operation, fgetl and fgets check the next character in the
file for the end-of-file marker. Therefore, these functions sometimes set the
end-of-file indicator before they return a value of -1. For example, consider
the following three-line text file. Each of the first two lines ends with a
newline character, and the third line contains only the end-of-file marker:

123
456

Three sequential calls to fgetl yield the following results:

t1 = fgetl(fid); % t1 = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof(fid) = true

This behavior does not conform to the ANSI specifications for the related C
language functions.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

4-9



4 Low-Level File I/O

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

4-10



Import Binary Data with Low-Level I/O

Import Binary Data with Low-Level I/O

In this section...

“Low-Level Functions for Importing Data” on page 4-11

“Reading Binary Data in a File” on page 4-12

“Reading Portions of a File” on page 4-14

“Reading Files Created on Other Systems” on page 4-17

“Opening Files with Different Character Encodings” on page 4-18

Low-Level Functions for Importing Data
Low-level file I/O functions allow the most direct control over reading or
writing data to a file. However, these functions require that you specify
more detailed information about your file than the easier-to-use high-level
functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats for Import and Export” on page 1-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file
you can view in a text editor. For more information, see “Reading Data in
a Formatted Pattern” on page 4-3.

• fgetl and fgets, which read one line of a file at a time, where a newline
character separates each line. For more information, see “Reading Data
Line-by-Line” on page 4-6.

• fread, which reads a stream of data at the byte or bit level. For more
information, see “Reading Binary Data in a File” on page 4-12.

Note The low-level file I/O functions are based on functions in the ANSI
Standard C Library. However, MATLAB includes vectorized versions of the
functions, to read and write data in an array with minimal control loops.

4-11



4 Low-Level File I/O

Reading Binary Data in a File
As with any of the low-level I/O functions, before importing, open the file with
fopen, and obtain a file identifier. When you finish processing a file, close it
with fclose(fileID).

By default, fread reads a file 1 byte at a time, and interprets each byte as
an 8-bit unsigned integer (uint8). fread creates a column vector, with one
element for each byte in the file. The values in the column vector are of class
double.

For example, consider the file nine.bin, created as follows:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

To read all data in the file into a 9-by-1 column vector of class double:

fid = fopen('nine.bin');
col9 = fread(fid);
fclose(fid);

Changing the Dimensions of the Array
By default, fread reads all values in the file into a column vector. However,
you can specify the number of values to read, or describe a two-dimensional
output matrix.

For example, to read nine.bin, described in the previous example:

fid = fopen('nine.bin');

% Read only the first six values
col6 = fread(fid, 6);

% Return to the beginning of the file
frewind(fid);

% Read first four values into a 2-by-2 matrix
frewind(fid);
two_dim4 = fread(fid, [2, 2]);

4-12



Import Binary Data with Low-Level I/O

% Read into a matrix with 3 rows and
% unspecified number of columns
frewind(fid);
two_dim9 = fread(fid, [3, inf]);

% Close the file
fclose(fid);

Describing the Input Values
If the values in your file are not 8-bit unsigned integers, specify the size of
the values.

For example, consider the file fpoint.bin, created with double-precision
values as follows:

myvals = [pi, 42, 1/3];

fid = fopen('fpoint.bin','w');
fwrite(fid, myvals, 'double');
fclose(fid);

To read the file:

fid = fopen('fpoint.bin');

% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')';

fclose(fid);

For a complete list of precision descriptions, see the fread function reference
page.

Saving Memory
By default, fread creates an array of class double. Storing double-precision
values in an array requires more memory than storing characters, integers, or
single-precision values.

4-13



4 Low-Level File I/O

To reduce the amount of memory required to store your data, specify the class
of the array using one of the following methods:

• Match the class of the input values with an asterisk ('*'). For example,
to read single-precision values into an array of class single, use the
command:

mydata = fread(fid,'*single')

• Map the input values to a new class with the '=>' symbol. For example, to
read uint8 values into an uint16 array, use the command:

mydata = fread(fid,'uint8=>uint16')

For a complete list of precision descriptions, see the fread function reference
page.

Reading Portions of a File
MATLAB low-level functions include several options for reading portions of
binary data in a file:

• Read a specified number of values at a time, as described in “Changing the
Dimensions of the Array” on page 4-12. Consider combining this method
with “Testing for End of File” on page 4-14.

• Move to a specific location in a file to begin reading. For more information,
see “Moving within a File” on page 4-15.

• Skip a certain number of bytes or bits after each element read. For an
example, see “Writing and Reading Complex Numbers” on page 4-31.

Testing for End of File
When you open a file, MATLAB creates a pointer to indicate the current
position within the file.

Note Opening an empty file does not move the file position indicator to the
end of the file. Read operations, and the fseek and frewind functions, move
the file position indicator.

4-14



Import Binary Data with Low-Level I/O

Use the feof function to check whether you have reached the end of a file.
feof returns a value of 1 when the file pointer is at the end of the file.
Otherwise, it returns 0.

For example, read a large file in parts:

filename = 'largedata.dat'; % hypothetical file
segsize = 10000;

fid = fopen(filename);

while ~feof(fid)
currData = fread(fid, segsize);
if ~isempty(currData)

disp('Current Data:');
disp(currData);

end
end

fclose(fid);

Moving within a File
To read or write selected portions of data, move the file position indicator to
any location in the file. For example, call fseek with the syntax

fseek(fid,offset,origin);

where:

• fid is the file identifier obtained from fopen.

• offset is a positive or negative offset value, specified in bytes.

• origin specifies the location from which to calculate the position:

'bof' Beginning of file

'cof' Current position in file

'eof' End of file

4-15



4 Low-Level File I/O

Alternatively, to move easily to the beginning of a file:

frewind(fid);

Use ftell to find the current position within a given file. ftell returns the
number of bytes from the beginning of the file.

For example, create a file five.bin:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
fclose(fid);

Because the call to fwrite specifies the short format, each element of A uses
two storage bytes in five.bin.

Reopen five.bin for reading:

fid = fopen('five.bin','r');

Move the file position indicator forward 6 bytes from the beginning of the file:

status = fseek(fid,6,'bof');

Read the next element:

four = fread(fid,1,'short');

The act of reading advances the file position indicator. To determine the
current file position indicator, call ftell:

position = ftell(fid)

position =
8

4-16



Import Binary Data with Low-Level I/O

To move the file position indicator back 4 bytes, call fseek again:

status = fseek(fid,-4,'cof');

Read the next value:

three = fread(fid,1,'short');

Reading Files Created on Other Systems
Different operating systems store information differently at the byte or bit
level:

• Big-endian systems store bytes starting with the largest address in memory
(that is, they start with the big end).

• Little-endian systems store bytes starting with the smallest address (the
little end).

Windows systems use little-endian byte ordering, and UNIX systems use
big-endian byte ordering.

To read a file created on an opposite-endian system, specify the byte ordering
used to create the file. You can specify the ordering in the call to open the file,
or in the call to read the file.

For example, consider a file with double-precision values named little.bin,
created on a little-endian system. To read this file on a big-endian system, use
one (or both) of the following commands:

• Open the file with

4-17



4 Low-Level File I/O

fid = fopen('little.bin', 'r', 'l')

• Read the file with

mydata = fread(fid, 'double', 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer
function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian
systems.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

The encoding scheme determines the number of bytes required to read or
write char values. For example, US-ASCII characters always use 1 byte, but
UTF-8 characters use up to 4 bytes. MATLAB automatically processes the
required number of bytes for each char value based on the specified encoding
scheme. However, if you specify a uchar precision, MATLAB processes each
byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

4-18



Export to Text Data Files with Low-Level I/O

Export to Text Data Files with Low-Level I/O

In this section...

“Writing to Text Files” on page 4-19

“Appending or Overwriting Existing Files” on page 4-22

“Opening Files with Different Character Encodings” on page 4-25

Writing to Text Files
To create rectangular, delimited ASCII files (such as CSV files) from numeric
arrays, use high-level functions such as dlmwrite. For more information, see
“Write to Delimited Data Files” on page 2-26.

To create other text files, including combinations of numeric and character
data, nonrectangular output files, or files with non-ASCII encoding schemes,
use the low-level fprintf function. For more information, see the following
sections.

Note fprintf is based on its namesake in the ANSI Standard C Library.
However, MATLAB uses a vectorized version of fprintf that writes data from
an array with minimal control loops.

Opening the File
As with any of the low-level I/O functions, before exporting, open or create
a file with fopen, and obtain a file identifier. By default, fopen opens a file
for read-only access, so you must specify the permission to write or append,
such as 'w' or 'a'.

When you finish processing the file, close it with fclose(fid).

Describing the Output
fprintf accepts arrays as inputs, and converts the numbers or characters in
the arrays to text according to your specifications.

4-19



4 Low-Level File I/O

For example, to print floating-point numbers, specify '%f'. Other common
conversion specifiers include '%d' for integers or '%s' for strings. For a
complete list of conversion specifiers, see the fprintf reference page.

To move to a new line in the file, use '\n'.

Note Some Windows text editors, including Microsoft Notepad, require
a newline character sequence of '\r\n' instead of '\n'. However, '\n' is
sufficient for Microsoft Word or WordPad.

fprintf reapplies the conversion information to cycle through all values
of the input arrays in column order.

For example, create a file named exptable.txt that contains a short table of
the exponential function, and a text header:

% create a matrix y, with two rows
x = 0:0.1:1;
y = [x; exp(x)];

% open a file for writing
fid = fopen('exptable.txt', 'w');

% print a title, followed by a blank line
fprintf(fid, 'Exponential Function\n\n');

% print values in column order
% two values appear on each row of the file
fprintf(fid, '%f %f\n', y);
fclose(fid);

4-20



Export to Text Data Files with Low-Level I/O

To view the file, use the type function:

type exptable.txt

This returns the contents of the file:

Exponential Function

0.000000 1.000000
0.100000 1.105171
0.200000 1.221403
0.300000 1.349859
0.400000 1.491825
0.500000 1.648721
0.600000 1.822119
0.700000 2.013753
0.800000 2.225541
0.900000 2.459603
1.000000 2.718282

Additional Formatting Options
Optionally, include additional information in the call to fprintf to describe
field width, precision, or the order of the output values. For example, specify
the field width and number of digits to the right of the decimal point in the
exponential table:

fid = fopen('exptable_new.txt', 'w');

fprintf(fid, 'Exponential Function\n\n');
fprintf(fid, '%6.2f %12.8f\n', y);

fclose(fid);

4-21



4 Low-Level File I/O

exptable_new.txt contains the following:

Exponential Function

0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

For more information, see “Formatting Strings” in the Programming
Fundamentals documentation, and the fprintf reference page.

Appending or Overwriting Existing Files
By default, fopen opens files with read access. To change the type of file
access, use the permission string in the call to fopen. Possible permission
strings include:

• r for reading

• w for writing, discarding any existing contents of the file

• a for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign
to the permission, such as 'w+' or 'a+'. For a complete list of permission
values, see the fopen reference page.

Note If you open a file for both reading and writing, you must call fseek or
frewind between read and write operations.

4-22



Export to Text Data Files with Low-Level I/O

Example — Append to an Existing Text File
Create a file changing.txt as follows:

myformat = '%5d %5d %5d %5d\n';

fid = fopen('changing.txt','w');
fprintf(fid, myformat, magic(4));
fclose(fid);

The current contents of changing.txt are:

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

Add the values [55 55 55 55] to the end of file:

% open the file with permission to append
fid = fopen('changing.txt','a');

% write values at end of file
fprintf(fid, myformat, [55 55 55 55]);

% close the file
fclose(fid);

To view the file, call the type function:

type changing.txt

This command returns the new contents of the file:

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1
55 55 55 55

Example — Overwrite an Existing Text File
This example shows two ways to replace characters in a text file.

4-23



4 Low-Level File I/O

A text file consists of a contiguous string of characters, including newline
characters. To replace a line of the file with a different number of characters,
you must rewrite the line that you want to change and all subsequent lines in
the file.

For example, replace the first line of changing.txt (created in the previous
example) with longer, descriptive text. Because the change applies to the first
line, rewrite the entire file:

replaceLine = 1;
numLines = 5;
newText = 'This file originally contained a magic square';

fid = fopen('changing.txt','r');
mydata = cell(1, numLines);
for k = 1:numLines

mydata{k} = fgetl(fid);
end
fclose(fid);

mydata{replaceLine} = newText;

fid = fopen('changing.txt','w');
fprintf(fid, '%s\n', mydata{:});
fclose(fid);

The file now contains:

This file originally contained a magic square
2 11 7 14
3 10 6 15

13 8 12 1
55 55 55 55

If you want to replace a portion of a text file with exactly the same number of
characters, you do not need to rewrite any other lines in the file. For example,
replace the third line of changing.txt with [33 33 33 33]:

replaceLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

4-24



Export to Text Data Files with Low-Level I/O

% move the file position marker to the correct line
fid = fopen('changing.txt','r+');
for k=1:(replaceLine-1);

fgetl(fid);
end

% call fseek between read and write operations
fseek(fid, 0, 'cof');

fprintf(fid, myformat, newData);
fclose(fid);

The file now contains:

This file originally contained a magic square
2 11 7 14

33 33 33 33
13 8 12 1
55 55 55 55

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

4-25



4 Low-Level File I/O

Export Binary Data with Low-Level I/O

In this section...

“Low-Level Functions for Exporting Data” on page 4-26

“Writing Binary Data to a File” on page 4-27

“Overwriting or Appending to an Existing File” on page 4-27

“Creating a File for Use on a Different System” on page 4-29

“Opening Files with Different Character Encodings” on page 4-30

“Writing and Reading Complex Numbers” on page 4-31

Low-Level Functions for Exporting Data
Low-level file I/O functions allow the most direct control over reading or
writing data to a file. However, these functions require that you specify
more detailed information about your file than the easier-to-use high-level
functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats for Import and Export” on page 1-2.

If the high-level functions cannot export your data, use one of the following:

• fprintf, which writes formatted data to a text or ASCII file; that is, a
file you can view in a text editor or import into a spreadsheet. For more
information, see “Export to Text Data Files with Low-Level I/O” on page
4-19.

• fwrite, which writes a stream of binary data to a file. For more
information, see “Writing Binary Data to a File” on page 4-27.

Note The low-level file I/O functions are based on functions in the ANSI
Standard C Library. However, MATLAB includes vectorized versions of the
functions, to read and write data in an array with minimal control loops.

4-26



Export Binary Data with Low-Level I/O

Writing Binary Data to a File
Use the fwrite function to export a stream of binary data to a file. As with
any of the low-level I/O functions, before writing, open or create a file with
fopen, and obtain a file identifier. When you finish processing a file, close it
with fclose.

By default, fwrite writes values from an array in column order as 8-bit
unsigned integers (uint8).

For example, create a file nine.bin with the integers from 1 to 9:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

If the values in your matrix are not 8-bit unsigned integers, specify the
precision of the values. For example, to create a file with double-precision
values:

mydata = [pi, 42, 1/3];

fid = fopen('double.bin','w');
fwrite(fid, mydata, 'double');
fclose(fid);

For a complete list of precision descriptions, see the fwrite function reference
page.

Overwriting or Appending to an Existing File
By default, fopen opens files with read access. To change the type of file
access, use the permission string in the call to fopen. Possible permission
strings include:

• r for reading

• w for writing, discarding any existing contents of the file

• a for appending to the end of an existing file

4-27



4 Low-Level File I/O

To open a file for both reading and writing or appending, attach a plus sign
to the permission, such as 'w+' or 'a+'. For a complete list of permission
values, see the fopen reference page.

Note If you open a file for both reading and writing, you must call fseek or
frewind between read and write operations.

When you open a file, MATLAB creates a pointer to indicate the current
position within the file. To read or write selected portions of data, move this
pointer to any location in the file. For more information, see “Moving within
a File” on page 4-15.

Example — Overwriting Binary Data in an Existing File
Create a file magic4.bin as follows, specifying permission to write and read:

fid = fopen('changing.bin','w+');
fwrite(fid,magic(4));

The original magic(4) matrix is:

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

The file contains 16 bytes, 1 for each value in the matrix. Replace the second
set of four values (the values in the second column of the matrix) with the
vector [44 44 44 44]:

% fseek to the fourth byte after the beginning of the file
fseek(fid, 4, 'bof');

%write the four values
fwrite(fid,[44 44 44 44]);

% read the results from the file into a 4-by-4 matrix
frewind(fid);
newdata = fread(fid, [4,4])

4-28



Export Binary Data with Low-Level I/O

% close the file
fclose(fid);

The newdata in the file changing.bin is:

16 44 3 13
5 44 10 8
9 44 6 12
4 44 15 1

Example — Appending Binary Data to an Existing File
Add the values [55 55 55 55] to the end of the changing.bin file created in
the previous example.

% open the file to append and read
fid = fopen('changing.bin','a+');

% write values at end of file
fwrite(fid,[55 55 55 55]);

% read the results from the file into a 4-by-5 matrix
frewind(fid);
appended = fread(fid, [4,5])

% close the file
fclose(fid);

The appended data in the file changing.bin is:

16 44 3 13 55
5 44 10 8 55
9 44 6 12 55
4 44 15 1 55

Creating a File for Use on a Different System
Different operating systems store information differently at the byte or bit
level:

4-29



4 Low-Level File I/O

• Big-endian systems store bytes starting with the largest address in memory
(that is, they start with the big end).

• Little-endian systems store bytes starting with the smallest address (the
little end).

Windows systems use little-endian byte ordering, and UNIX systems use
big-endian byte ordering.

To create a file for use on an opposite-endian system, specify the byte ordering
for the target system. You can specify the ordering in the call to open the file,
or in the call to write the file.

For example, to create a file named myfile.bin on a big-endian system for
use on a little-endian system, use one (or both) of the following commands:

• Open the file with

fid = fopen('myfile.bin', 'w', 'l')

• Write the file with

fwrite(fid, mydata, precision, 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer
function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian
systems.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

The encoding scheme determines the number of bytes required to read or
write char values. For example, US-ASCII characters always use 1 byte, but

4-30



Export Binary Data with Low-Level I/O

UTF-8 characters use up to 4 bytes. MATLAB automatically processes the
required number of bytes for each char value based on the specified encoding
scheme. However, if you specify a uchar precision, MATLAB processes each
byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

Writing and Reading Complex Numbers
The available precision values for fwrite do not explicitly support complex
numbers. To store complex numbers in a file, separate the real and imaginary
components and write them separately to the file.

After separating the values, write all real components followed by all
imaginary components, or interleave the components. Use the method that
allows you to read the data in your target application.

For example, consider the following set of complex numbers:

nrows = 5;
ncols = 5;
z = complex(rand(nrows, ncols), rand(nrows, ncols));

% Divide into real and imaginary components
z_real = real(z);
z_imag = imag(z);

One approach: write all the real components, followed by all the imaginary
components:

adjacent = [z_real z_imag];

4-31



4 Low-Level File I/O

fid = fopen('complex_adj.bin', 'w');
fwrite(fid, adjacent, 'double');
fclose(fid);

% To read these values back in, so that:
% same_real = z_real
% same_imag = z_imag
% same_z = z

fid = fopen('complex_adj.bin');
same_real = fread(fid, [nrows, ncols], 'double');
same_imag = fread(fid, [nrows, ncols], 'double');
fclose(fid);

same_z = complex(same_real, same_imag);

An alternate approach: interleave the real and imaginary components for
each value. fwrite writes values in column order, so build an array that
combines the real and imaginary parts by alternating rows.

% Preallocate the interleaved array
interleaved = zeros(nrows*2, ncols);

% Alternate real and imaginary data
newrow = 1;
for row = 1:nrows

interleaved(newrow,:) = z_real(row,:);
interleaved(newrow + 1,:) = z_imag(row,:);
newrow = newrow + 2;

end

% Write the interleaved values
fid = fopen('complex_int.bin','w');
fwrite(fid, interleaved, 'double');
fclose(fid);

% To read these values back in, so that:
% same_real = z_real
% same_imag = z_imag

4-32



Export Binary Data with Low-Level I/O

% same_z = z
% Use the skip parameter in fread (double = 8 bytes)

fid = fopen('complex_int.bin');
same_real = fread(fid, [nrows, ncols], 'double', 8);

% Return to the first imaginary value in the file
fseek(fid, 8, 'bof');
same_imag = fread(fid, [nrows, ncols], 'double', 8);
fclose(fid);

same_z = complex(same_real, same_imag);

4-33



4 Low-Level File I/O

4-34



5

Images

• “Importing Images” on page 5-2

• “Exporting to Images” on page 5-6



5 Images

Importing Images
To import data into the MATLAB workspace from a graphics file, use the
imread function. Using this function, you can import data from files in many
standard file formats, including the Tagged Image File Format (TIFF),
Graphics Interchange Format (GIF), Joint Photographic Experts Group
(JPEG), and Portable Network Graphics (PNG) formats. For a complete list of
supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the
MATLAB workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of
class uint8. The dimensions of the array depend on the format of the data.
For example, imread uses three dimensions to represent RGB color images:

whos I
Name Size Bytes Class

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

For more control over reading TIFF files, use the Tiff object—see “Reading
Image Data and Metadata from TIFF Files” on page 5-3 for more information.

Getting Information about Image Files
If you have a file in a standard graphics format, use the imfinfo function to
get information about its contents. The imfinfo function returns a structure
containing information about the file. The fields in the structure vary with
the file format, but imfinfo always returns some basic information including
the file name, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts
Group (JPEG) format:

info = imfinfo('ngc6543a.jpg')

5-2



Importing Images

info =

Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg'
FileModDate: '01-Oct-1996 16:19:44'

FileSize: 27387
Format: 'jpg'

FormatVersion: ''
Width: 600

Height: 650
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =..

Reading Image Data and Metadata from TIFF Files
While you can use imread to import image data and metadata from TIFF
files, the function does have some limitations. For example, a TIFF file can
contain multiple images and each images can have multiple subimages. While
you can read all the images from a multi-image TIFF file with imread, you
cannot access the subimages. Using the Tiff object, you can read image data,
metadata, and subimages from a TIFF file. When you construct a Tiff object,
it represents your connection with a TIFF file and provides access to many of
the routines in the LibTIFF library.

The following section provides a step-by-step example of using Tiff object
methods and properties to read subimages from a TIFF file. To get the most
out of the Tiff object, you must be familiar with the TIFF specification
and technical notes. View this documentation at LibTIFF - TIFF Library
and Utilities

Reading Subimages from a TIFF File
A TIFF file can contain one or more image file directories (IFD). Each IFD
contains image data and the metadata (tags) associated with the image. Each
IFD can contain one or more subIFDs, which can also contain image data and

5-3

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/


5 Images

metadata. These subimages are typically reduced-resolution (thumbnail)
versions of the image data in the IFD containing the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage
from the SubIFD tag. The SubIFD tag contains an array of byte offsets that
point to the subimages. You can then pass the address of the subIFD to the
setSubDirectory method to make the subIFD the current IFD. Most Tiff
object methods operate on the current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff
object constructor. This example uses the TIFF file created in “Creating
Subdirectories in a TIFF File” on page 5-11, which contains one IFD directory
with two subIFDs. The Tiff constructor opens the TIFF file, and makes the
first subIFD in the file the current IFD:

t = Tiff('my_subimage_file.tif','r');

2 Retrieve the locations of subIFDs associated with the current IFD. Use the
getTag method to get the value of the SubIFD tag. This returns an array of
byte offsets that specify the location of subIFDs:

offsets = t.getTag('SubIFD')

3 Navigate to the first subIFD using the setSubDirectory method. Specify
the byte offset of the subIFD as an argument. This call makes the subIFD
the current IFD:

t.setSubDirectory(offsets(1));

4 Read the image data from the current IFD (the first subIFD) as you would
with any other IFD in the file:

subimage_one = t.read();

5 View the first subimage:

imagesc(subimage_one)

6 To view the second subimage, call the setSubDirectory method again,
specifying the byte offset of the second subIFD:

t.setSubDirectory(offsets(2));

5-4



Importing Images

7 Read the image data from the current IFD (the second subIFD) as you would
with any other IFD in the file:

subimage_two = t.read();

8 View the second subimage:

imagesc(subimage_two)

9 Close the Tiff object.

t.close();

5-5



5 Images

Exporting to Images
To export data from the MATLAB workspace using one of the standard
graphics file formats, use the imwrite function. Using this function, you can
export data in formats such as the Tagged Image File Format (TIFF), Joint
Photographic Experts Group (JPEG), and Portable Network Graphics (PNG).
For a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from
the MATLAB workspace into a file in TIFF format. The class of the output
image written to the file depends on the format specified. For most formats, if
the input array is of class uint8, imwrite outputs the data as 8-bit values.
See the imwrite reference page for details.

whos I
Name Size Bytes Class

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats.
For example, with TIFF file format, you can specify the type of compression
MATLAB uses to store the image. See the imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object—see
“Exporting Image Data and Metadata to TIFF Files” on page 5-6 for more
information.

Exporting Image Data and Metadata to TIFF Files
While you can use imwrite to export image data and metadata (tags)
to Tagged Image File Format (TIFF) files, the function does have some
limitations. For example, when you want to modify image data or metadata in
the file, you must write the all the data to the file. You cannot write only the
updated portion. Using the Tiff object, you can write portions of the image
data and modify or add individual tags to a TIFF file. When you construct a

5-6



Exporting to Images

Tiff object, it represents your connection with a TIFF file and provides access
to many of the routines in the LibTIFF library.

The following sections provide step-by-step examples of using Tiff object
methods and properties to perform some common tasks with TIFF files. To
get the most out of the Tiff object, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF -
TIFF Library and Utilities

Creating a New TIFF File

1 Create some image data. This example reads image data from a JPEG file
included with MATLAB:

imgdata = imread('ngc6543a.jpg');

2 Create a new TIFF file by constructing a Tiff object, specifying the name of
the new file as an argument. To create a file you must specify either write
mode ('w') or append mode ('a'):

t = Tiff('myfile.tif','w');

When you create a new TIFF file, the Tiff constructor creates a file containing
an image file directory (IFD). A TIFF file uses this IFD to organize all the data
and metadata associated with a particular image. A TIFF file can contain
multiple IFDs. The Tiff object makes the IFD it creates the current IFD. Tiff
object methods operate on the current IFD. You can navigate among IFDs in a
TIFF file and specify which IFD is the current IFD using Tiff object methods.

3 Set required TIFF tags using the setTag method of the Tiff object. These
required tags specify information about the image, such as its length
and width. To break the image data into strips, specify a value for the
RowsPerStrip tag. To break the image data into tiles, specify values for
the TileWidth and TileLength tags. The example creates a structure that
contains tag names and values and passes that to setTag. You also can set
each tag individually.

tagstruct.ImageLength = size(imgdata,1)
tagstruct.ImageWidth = size(imgdata,2)
tagstruct.Photometric = Tiff.Photometric.RGB
tagstruct.BitsPerSample = 8

5-7

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/


5 Images

tagstruct.SamplesPerPixel = 3
tagstruct.RowsPerStrip = 16
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct.Software = 'MATLAB'
t.setTag(tagstruct)

For information about supported TIFF tags and how to set their
values, see “Setting Tag Values” on page 5-13. For example, the Tiff
object supports properties that you can use to set the values of certain
properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write
method of the Tiff object.

t.write(imgdata);

If you wanted to put multiple images into your file, call the writeDirectory
method right after performing this write operation. The writeDirectory
method sets up a new image file directory in the file and makes this new
directory the current directory.

5 Close your connection to the file by closing the Tiff object:

t.close();

6 Test that you created a valid TIFF file by using the imread function to read
the file, and then display the image:

imagesc(imread('myfile.tif'));

Writing a Strip or Tile of Image Data

Note You can only modify a strip or a tile of image data if the data is not
compressed.

5-8



Exporting to Images

1 Open an existing TIFF file for modification by creating a Tiff object. This
example uses the file created in “Creating a New TIFF File” on page 5-7. The
Tiff constructor returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+');

2 Generate some data to write to a strip in the image. This example creates a
three-dimensional array of zeros that is the size of a strip. The code uses the
number of rows in a strip, the width of the image, and the number of samples
per pixel as dimensions. The array is an array of uint8 values.

width = t.getTag('ImageWidth');
height = t.getTag('RowsPerStrip');
numSamples = t.getTag('SamplesPerPixel');
stripData = zeros(height,width,numSamples,'uint8');

If the image data had a tiled layout, you would use the TileWidth and
TileLength tags to specify the dimensions.

3 Write the data to a strip in the file using the writeEncodedStrip method.
Specify the index number that identifies the strip you want to modify. The
example picks strip 18 because it is easier to see the change in the image.

t.writeEncodedStrip(18, stripData);

If the image had a tiled layout, you would use the writeEncodedTile method
to modify the tile.

4 Close your connection to the file by closing the Tiff object.

t.close();

5 Test that you modified a strip of the image in the TIFF file by using the
imread function to read the file, and then display the image.

modified_imgdata = imread('myfile.tif');
imagesc(modified_imgdata)

Note the black strip across the middle of the image.

5-9



5 Images

Modifying TIFF File Metadata (Tags)

1 Open an existing TIFF file for modification using the Tiff object. This
example uses the file created in “Creating a New TIFF File” on page 5-7. The
Tiff constructor returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+');

2 Verify that the file does not contain the Artist tag, using the getTag method.
This code should issue an error message saying that it was unable to retrieve
the tag.

artist_value = t.getTag('Artist');

3 Add the Artist tag using the setTag method.

t.setTag('Artist','Pablo Picasso');

4 Write the new tag data to the TIFF file using the rewriteDirectory method.
Use the rewriteDirectory method when modifying existing metadata in a
file or adding new metadata to a file.

t.rewriteDirectory();

5 Close your connection to the file by closing the Tiff object.

t.close();

6 Test your work by reopening the TIFF file and getting the value of the Artist
tag, using the getTag method.

t = Tiff('myfile.tif', 'r');

t.getTag('Artist')

ans =

Pablo Picasso

t.close();

5-10



Exporting to Images

Creating Subdirectories in a TIFF File

1 Create some image data. This example reads image data from a JPEG file
included with MATLAB. The example then creates two reduced-resolution
(thumbnail) versions of the image data.

imgdata = imread('ngc6543a.jpg');
%
% Reduce number of pixels by a half.
img_half = imgdata(1:2:end,1:2:end,:);
%
% Reduce number of pixels by a third.
img_third = imgdata(1:3:end,1:3:end,:);

2 Create a new TIFF file by constructing a Tiff object and specifying the name
of the new file as an argument. To create a file you must specify either write
mode ('w') or append mode ('a'). The Tiff constructor returns a handle
to a Tiff object.

t = Tiff('my_subimage_file.tif','w');

3 Set required TIFF tags using the setTag method of the Tiff object. These
required tags specify information about the image, such as its length
and width. To break the image data into strips, specify a value for the
RowsPerStrip tag. To break the image data into tiles, use the TileWidth and
TileLength tags. The example creates a structure that contains tag names
and values and passes that to setTag. You can also set each tag individually.

To create subdirectories, you must set the SubIFD tag, specifying the number
of subdirectories you want to create. Note that the number you specify isn’t
the value of the SubIFD tag. The number tells the Tiff software to create a
SubIFD that points to two subdirectories. The actual value of the SubIFD tag
will be the byte offsets of the two subdirectories.

tagstruct.ImageLength = size(imgdata,1)
tagstruct.ImageWidth = size(imgdata,2)
tagstruct.Photometric = Tiff.Photometric.RGB
tagstruct.BitsPerSample = 8
tagstruct.SamplesPerPixel = 3
tagstruct.RowsPerStrip = 16
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky

5-11



5 Images

tagstruct.Software = 'MATLAB'
tagstruct.SubIFD = 2 % required to create subdirectories
t.setTag(tagstruct)

For information about supported TIFF tags and how to set their
values, see “Setting Tag Values” on page 5-13. For example, the Tiff
object supports properties that you can use to set the values of certain
properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write
method of the Tiff object.

t.write(imgdata);

5 Set up the first subdirectory by calling the writeDirectory method. The
writeDirectory method sets up the subdirectory and make the new directory
the current directory. Because you specified that you wanted to create two
subdirectories, writeDirectory sets up a subdirectory.

t.writeDirectory();

6 Set required tags, just as you did for the regular directory. According to the
LibTIFF API, a subdirectory cannot contain a SubIFD tag.

tagstruct2.ImageLength = size(img_half,1)
tagstruct2.ImageWidth = size(img_half,2)
tagstruct2.Photometric = Tiff.Photometric.RGB
tagstruct2.BitsPerSample = 8
tagstruct2.SamplesPerPixel = 3
tagstruct2.RowsPerStrip = 16
tagstruct2.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct2.Software = 'MATLAB'
t.setTag(tagstruct2)

7 Write the image data and metadata to the subdirectory using the write
method of the Tiff object.

t.write(img_half);

5-12



Exporting to Images

8 Set up the second subdirectory by calling the writeDirectory method. The
writeDirectory method sets up the subdirectory and makes it the current
directory.

t.writeDirectory();

9 Set required tags, just as you would for any directory. According to the
LibTIFF API, a subdirectory cannot contain a SubIFD tag.

tagstruct3.ImageLength = size(img_third,1)
tagstruct3.ImageWidth = size(img_third,2)
tagstruct3.Photometric = Tiff.Photometric.RGB
tagstruct3.BitsPerSample = 8
tagstruct3.SamplesPerPixel = 3
tagstruct3.RowsPerStrip = 16
tagstruct3.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct3.Software = 'MATLAB'
t.setTag(tagstruct3)

10 Write the image data and metadata to the subdirectory using the write
method of the Tiff object:

t.write(img_third);

11 Close your connection to the file by closing the Tiff object:

t.close();

Setting Tag Values
The following table lists all the TIFF tags that the Tiff object supports and
includes information about their MATLAB class and size. For certain tags,
the table also indicates the set of values that the Tiff object supports, which
is a subset of all the possible values defined by the TIFF specification. You
can use Tiff object properties to specify the supported values for these tags.
For example, use Tiff.Compression.JPEG to specify JPEG compression. See
the Tiff class reference page for a full list of properties.

5-13



5 Images

Table 1: Supported TIFF Tags

TIFF Tag Class Size Supported
Values

Notes

Artist char 1xN

BitsPerSample double 1x1 1,8,16,32,64 See Table 2

ColorMap double 256x3 Values should
be normalized
between 0–1.
Stored internally
as uint16 values.

Photometric must
be Palette

Compression double 1x1 None: 1
CCITTRLE: 2
CCITTFax3: 3
CCITTFax4: 4
LZW: 5
JPEG: 7
CCITTRLEW: 32771
PackBits: 32773
Deflate: 32946
AdobeDeflate: 8

See Table 3.

Copyright char 1xN

DateTime char 1x19 Return value is
padded to 19 chars
if required.

DocumentName char 1xN

DotRange double 1x2 Photometric must
be Separated

ExtraSamples double 1xN Unspecified: 0
AssociatedAlpha:
1
UnassociatedAlpha:
2

See Table 4.

FillOrder double 1x1

GeoAsciiParamsTag char 1xN

5-14



Exporting to Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

GeoDoubleParamsTag double 1xN

GeoKeyDirectoryTag double Nx4

Group3Options double 1x1 Compression must
be CCITTFax3

Group4Options double 1x1 Compression must
be CCITTFax4

HalfToneHints double 1x2

HostComputer char 1xn

ICCProfile uint8 1xn

ImageDescription char 1xn

ImageLength double 1x1

ImageWidth double 1x1

InkNames char
cell
array

1x
NumInks

Photometric must
be Separated

InkSet double 1x1 CMYK: 1
MultiInk: 2

Photometric must
be Separated

JPEGQuality double 1x1 A value between 1
and 100

Make char 1xn

MaxSampleValue double 1x1 0–65,535

MinSampleValue double 1x1 0–65,535

Model char 1xN

ModelPixelScaleTag double 1x3

ModelTiepointTag double Nx6

ModelTransformationMatrixTag double 1x16

5-15



5 Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

NumberOfInks double 1x1 Must be equal to
SamplesPerPixel

Orientation double 1x1 TopLeft: 1
TopRight: 2
BottomRight: 3
BottomLeft: 4
LeftTop: 5
RightTop: 6
RightBottom: 7
LeftBottom: 8

PageName char 1xN

PageNumber double 1x2

Photometric double 1x1 MinIsWhite: 0
MinIsBlack: 1
RGB: 2
Palette: 3
Mask: 4
Separated: 5
YCbCr: 6
CIELab: 8
ICCLab: 9
ITULab: 10

See Table 2.

Photoshop uint8 1xN

PlanarConfiguration double 1x1 Chunky: 1
Separate: 2

PrimaryChromaticities double 1x6

ReferenceBlackWhite double 1x6

ResolutionUnit double 1x1

5-16



Exporting to Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

RICHTIFFIPTC uint8 1xN

RowsPerStrip double 1x1

SampleFormat double 1x1 Uint: 1
Int: 2
IEEEFP: 3

See Table 2

SamplesPerPixel double 1x1

SMaxSampleValue double 1x1 Range of
MATLAB data
type specified for
Image data

SMinSampleValue double 1x1 Range of
MATLAB data
type specified for
Image data

Software char 1xN

StripByteCounts double 1xN Read-only

StripOffsets double 1xN Read-only

SubFileType double 1x1 Default : 0
ReducedImage: 1
Page: 2
Mask: 4

SubIFD double 1x1

TargetPrinter char 1xN

Thresholding double 1x1 BiLevel: 1
HalfTone: 2
ErrorDiffuse: 3

Photometric can be
either: MinIsWhite
MinIsBlack

5-17



5 Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

TileByteCounts double 1xN Read-only

TileLength double 1x1 Must be amultiple
of 16

TileOffsets double 1xN Read-only

TileWidth double 1x1 Must be amultiple
of 16

TransferFunction double See
note1

Each value
should be within
0–2^16-1

SamplePerPixel
can be either 1 or 3

WhitePoint double 1x2 Photometric can be:
RGB
Palette
YCbCr
CIELab
ICCLab
ITULab

XMP char 1xn N>5

XPostion double 1x1

XResolution double 1x1

YCbCrCoefficents double 1x3 Photometric must
be YCbCr

YCbCrPositioning double 1x1 Centered: 1
Cosited: 2

Photometric must
be YCbCr

YCbCrSubSampling double 1x2 Photometric must
be YCbCr

YPosition double 1x1

YResolution double 1x1

ZipQuality double 1x1 Value between 1
and 9

5-18



Exporting to Images

1Size is 1x2^BitsPerSample or3x2^BitsPerSample.

Table 2: Valid SampleFormat Values for BitsPerSample Settings

BitsPerSample SampleFormat MATLAB Data Type

1 Uint logical

8 Uint, Int uint8, int8

16 Uint, Int uint16, int16

32 Uint, Int, IEEEFP uint32, int32, single

64 IEEEFP double

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations

BitsPerSample Values

Photometric
Values

1 8 16 32 64

MinIsWhite Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

MinIsBlack Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

RGB Uint Uint Uint
IEEEFP

IEEEFP

Pallette Uint Uint

Mask Uint

Separated Uint Uint Uint
IEEEFP

IEEEFP

YCbCr Uint Uint Uint
IEEEFP

IEEEFP

CIELab Uint Uint

ICCLab Uint Uint

ITULab Uint Uint

5-19



5 Images

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations

BitsPerSample Values

Compression
Values

1 8 16 32 64

None Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

CCITTRLE Uint

CCITTFax3 Uint

CCITTFax4 Uint

LZW Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

JPEG Uint
Int

CCITTRLEW Uint

PackBits Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

Deflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

AdobeDeflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

Table 5: Valid SamplesPerPixel Values for Photometric Settings

Photometric Values SamplesPerPixel1

MinIsWhite 1+

MinIsBlack 1+

RGB 3+

5-20



Exporting to Images

Table 5: Valid SamplesPerPixel Values for Photometric Settings
(Continued)

Photometric Values SamplesPerPixel1

Pallette 1

Mask 1

Separated 1+

YCbCr 3

CIELab 3+

ICCLab 3+

ITULab 3+

1 When you specify more than the expected number of samples per pixel (n+),
you must set the ExtraSamples tag accordingly.

5-21



5 Images

5-22



6

Scientific Data

• “Importing CDF Files” on page 6-2

• “Exporting to CDF Files” on page 6-10

• “Importing NetCDF Files and OPeNDAP Data” on page 6-12

• “Exporting to NetCDF Files” on page 6-21

• “Importing Flexible Image Transport System (FITS) Files” on page 6-30

• “Importing HDF5 Files” on page 6-32

• “Exporting to HDF5 Files” on page 6-40

• “Import HDF4 Files Programatically” on page 6-52

• “Map HDF4 to MATLAB Syntax” on page 6-57

• “Import HDF4 Files Using Low-Level Functions” on page 6-59

• “Import HDF4 Files Interactively” on page 6-63

• “About HDF4 and HDF-EOS” on page 6-81

• “Export to HDF4 Files” on page 6-82



6 Scientific Data

Importing CDF Files

In this section...

“Overview” on page 6-2

“High-Level CDF Import Functions” on page 6-2

“Using the CDF Library Low-Level Functions to Import Data” on page 6-6

Overview
CDF was created by the National Space Science Data Center (NSSDC) to
provide a self-describing data storage and manipulation format that matches
the structure of scientific data and applications (i.e., statistical and numerical
methods, visualization, and management). For more information about this
format, see the CDF Web site.

MATLAB provides two ways to access CDF files: a set of high-level functions
and a package of low-level functions that provide direct access to the routines
in the CDF C API library. The high level functions provide a simpler interface
to accessing CDF files. However, if you require more control over the import
operation, such as data subsetting for large data sets, use the low-level
functions. The following sections provide more information.

• “High-Level CDF Import Functions” on page 6-2

• “Using the CDF Library Low-Level Functions to Import Data” on page 6-6

High-Level CDF Import Functions
MATLAB includes high-level functions that you can use to get information
about the contents of a Common Data Format (CDF) file and then read data
from the file. The following sections provide more information.

• “Getting Information about the Contents of CDF File” on page 6-3

• “Reading Data from a CDF File” on page 6-4

• “Speeding Up Read Operations” on page 6-4

• “Representing CDF Time Values” on page 6-6

6-2

http://cdf.gsfc.nasa.gov/


Importing CDF Files

Getting Information about the Contents of CDF File
To get information about the contents of a CDF file, such as the names of
variables in the CDF file, use the cdfinfo function. The cdfinfo function
returns a structure containing general information about the file and detailed
information about the variables and attributes in the file.

In this example, the Variables field indicates the number of variables in the
file. Taking a closer look at the contents of this field, you can see that the first
variable, Time, is made up of 24 records containing CDF epoch data. The next
two variables, Longitude and Latitude, have only one associated record
containing int8 data. For details about how to interpret the data returned
in the Variables field, see cdfinfo.

Note Because cdfinfo creates temporary files, make sure that your current
working directory is writable before attempting to use the function.

info = cdfinfo('example.cdf')

info =

Filename: 'example.cdf'

FileModDate: '19-May-2010 12:03:11'

FileSize: 1310

Format: 'CDF'

FormatVersion: '2.7.0'

FileSettings: [1x1 struct]

Subfiles: {}

Variables: {6x6 cell}

GlobalAttributes: [1x1 struct]

VariableAttributes: [1x1 struct]

vars = info.Variables

vars =

'Time' [1x2 double] [24] 'epoch' 'T/' 'Full'

'Longitude' [1x2 double] [ 1] 'int8' 'F/FT' 'Full'

'Latitude' [1x2 double] [ 1] 'int8' 'F/TF' 'Full'

6-3



6 Scientific Data

'Data' [1x3 double] [ 1] 'double' 'T/TTT' 'Full'

'multidimensional' [1x4 double] [ 1] 'uint8' 'T/TTTT' 'Full'

'Temperature' [1x2 double] [10] 'int16' 'T/TT' 'Full'

Reading Data from a CDF File
To read all of the data in the CDF file, use the cdfread function. The function
returns the data in a cell array. The columns of data correspond to the
variables; the rows correspond to the records associated with a variable.

data = cdfread('example.cdf');

whos data
Name Size Bytes Class Attributes

data 24x6 16512 cell

To read the data associated with one or more particular variables, use the
'Variable' parameter. Specify the names of the variables as text strings in a
cell array. Variable names are case sensitive. The following example reads
the Longitude and Latitude variables from the file.

var_long_lat = cdfread('example.cdf','Variable',{'Longitude','Latitude'});

whos var_long_lat

Name Size Bytes Class Attributes

var_long_lat 1x2 128 cell

Speeding Up Read Operations
The cdfread function offers two ways to speed up read operations when
working with large data sets:

• Reducing the number of elements in the returned cell array

• Returning CDF epoch values as MATLAB serial date numbers rather than
as MATLAB cdfepoch objects

6-4



Importing CDF Files

To reduce the number of elements in the returned cell array, specify the
'CombineRecords' parameter. By default, cdfread creates a cell array with
a separate element for every variable and every record in each variable,
padding the records dimension to create a rectangular cell array. For
example, reading all the data from the example file produces an output
cell array, 24-by-6, where the columns represent variables and the rows
represent the records for each variable. When you set the 'CombineRecords'
parameter to true, cdfread creates a separate element for each variable
but saves time by putting all the records associated with a variable in a
single cell array element. Thus, reading the data from the example file with
'CombineRecords' set to true produces a 1-by-5 cell array, as shown below.

data_combined = cdfread('example.cdf','CombineRecords',true);

whos

Name Size Bytes Class Attributes

data 24x6 16512 cell

data_combined 1x6 2544 cell

When combining records, note that the dimensions of the data in the cell
change. For example, if a variable has 20 records, each of which is a scalar
value, the data in the cell array for the combined element contains a 20-by-1
vector of values. If each record is a 3-by-4 array, the cell array element
contains a 20-by-3-by-4 array. For combined data, cdfread adds a dimension
to the data, the first dimension, that is the index into the records.

Another way to speed up read operations is to read CDF epoch values as
MATLAB serial date numbers. By default, cdfread creates a MATLAB
cdfepoch object for each CDF epoch value in the file. If you specify the
'ConvertEpochToDatenum' parameter, setting it to true, cdfread returns
CDF epoch values as MATLAB serial date numbers. For more information
about working with MATLAB cdfepoch objects, see “Representing CDF Time
Values” on page 6-6.

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);

whos

Name Size Bytes Class Attributes

6-5



6 Scientific Data

data 24x6 16512 cell

data_combined 1x6 2544 cell

data_datenums 24x6 13536 cell

Representing CDF Time Values
CDF represents time differently than MATLAB. CDF represents date and
time as the number of milliseconds since 1-Jan-0000. This is called an epoch
in CDF terminology. MATLAB represents date and time as a serial date
number, which is the number of days since 0-Jan-0000. To represent CDF
dates, MATLAB uses an object called a CDF epoch object. To access the time
information in a CDF object, use the object’s todatenum method.

For example, this code extracts the date information from a CDF epoch object:

1 Extract the date information from the CDF epoch object returned in the cell
array data (see “Importing CDF Files” on page 6-2). Use the todatenum
method of the CDF epoch object to get the date information, which is returned
as a MATLAB serial date number.

m_date = todatenum(data{1});

2 View the MATLAB serial date number as a string.

datestr(m_date)
ans =

01-Jan-2001

Using the CDF Library Low-Level Functions to Import
Data
To import (read) data from a Common Data Format (CDF) file, you can use
the MATLAB low-level CDF functions. The MATLAB functions correspond
to dozens of routines in the CDF C API library. For a complete list of all the
MATLAB low-level CDF functions, see cdflib.

This section does not attempt to describe all features of the CDF library
or explain basic CDF programming concepts. To use the MATLAB CDF
low-level functions effectively, you must be familiar with the CDF C interface.
Documentation about CDF, version 3.3.0, is available at the CDF Web site.

6-6

http://cdf.gsfc.nasa.gov/


Importing CDF Files

The following example shows how to use low-level functions to read data
from a CDF file.

1 Open the sample CDF file. For information about creating a new CDF file,
see “Exporting to CDF Files” on page 6-10.

cdfid = cdflib.open('example.cdf');

2 Get some information about the contents of the file, such as the number
of variables in the file, the number of global attributes, and the number
of attributes with variable scope.

info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: 23
numVars: 6

numvAttrs: 1
numgAttrs: 3

3 Get information about the individual variables in the file. Variable ID
numbers start at zero.

info = cdflib.inquireVar(cdfid,0)

info =

name: 'Time'
datatype: 'cdf_epoch'

numElements: 1
dims: []

recVariance: 1
dimVariance: []

info = cdflib.inquireVar(cdfid,1)

info =

6-7



6 Scientific Data

name: 'Longitude'
datatype: 'cdf_int1'

numElements: 1
dims: [2 2]

recVariance: 0
dimVariance: [1 0]

4 Read the data in a variable into the workspace. The first variable contains
CDF Epoch time values. The low-level interface returns these as double
values.

data_time = cdflib.getVarRecordData(cdfid,0,0)

data_time =

6.3146e+013

% convert the time value to a time vector
timeVec = cdflib.epochBreakdown(data_time)

timeVec =

2001
1
1
0
0
0
0

5 Read a global attribute from the file.

% Determine which attributes are global.
info = cdflib.inquireAttr(cdfid,0)

info =

name: 'SampleAttribute'
scope: 'GLOBAL_SCOPE'

maxgEntry: 4
maxEntry: -1

6-8



Importing CDF Files

% Read the value of the attribute. Note you must use the
% cdflib.getAttrgEntry function for global attributes.
value = cdflib.getAttrgEntry(cdfid,0,0)

value =

This is a sample entry.

6 Close the CDF file.

cdflib.close(cdfid);

6-9



6 Scientific Data

Exporting to CDF Files
The Common Data Format (CDF) was created by the National Space
Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). For more information about this format, see the CDF Web site.

To export (write) data from a Common Data Format (CDF) file, use the
MATLAB low-level CDF functions. The MATLAB functions correspond to
dozens of routines in the CDF C API library. For a complete list of all the
MATLAB low-level CDF functions, see cdflib.

This section does not attempt to describe all features of the CDF library
or explain basic CDF programming concepts. To use the MATLAB CDF
low-level functions effectively, you must be familiar with the CDF C interface.
Documentation about CDF, version 3.3.0, is available at the CDF Web site.

The following example shows how to use low-level functions to write data
to a CDF file.

1 Create a new CDF file. For information about opening an existing CDF
file, see “Using the CDF Library Low-Level Functions to Import Data”
on page 6-6.

cdfid = cdflib.create('my_file.cdf');

2 Create some variables in the CDF file.

time_id = cdflib.createVar(cdfid,'Time','cdf_int4',1,[],true,[]);

lat_id = cdflib.createVar(cdfid,'Latitude','cdf_int2',1,181,true,true);

dimSizes = [20 10];

dimVarys = [true true];

image_id = cdflib.createVar(cdfid,'Image','cdf_int4',1,dimSizes,true,[true true]);

3 Write data to the variables.

% Write time data

6-10

http://cdf.gsfc.nasa.gov/
http://cdf.gsfc.nasa.gov/


Exporting to CDF Files

cdflib.putVarRecordData(cdfid,time_id,0,int32(23));

cdflib.putVarRecordData(cdfid,time_id,1,int32(24));

% Write the latitude data

data = int16([-90:90]);

recspec = [0 1 1];

dimspec = { 0 181 1 };

cdflib.hyperPutVarData(cdfid,lat_id,recspec,dimspec,data);

% Write data for the image zVariable

recspec = [0 3 1];

dimspec = { [0 0], [20 10], [1 1] };

data = reshape(int32([0:599]), [20 10 3]);

cdflib.hyperPutVarData(cdfid,image_id,recspec,dimspec,data);

4 Create a global attribute in the CDF file and write data to the attribute..

titleAttrNum = cdflib.createAttr(cdfid,'TITLE','global_scope');

% Write the global attribute entries

cdflib.putAttrEntry(cdfid,titleAttrNum,0,'CDF_CHAR','cdf Title');

cdflib.putAttrEntry(cdfid,titleAttrNum,1,'CDF_CHAR','Author');

5 Create attributes associated with variables in the CDF file and write data
to the attribute.

fieldAttrNum = cdflib.createAttr(cdfid,'FIELDNAM','variable_scope');

unitsAttrNum = cdflib.createAttr(cdfid,'UNITS','variable_scope');

% Write the time variable attributes

cdflib.putAttrEntry(cdfid,fieldAttrNum,time_id,'CDF_CHAR','Time of observation');

cdflib.putAttrEntry(cdfid,unitsAttrNum,time_id,'CDF_CHAR','Hours');

6 Close the CDF file.

cdflib.close(cdfid);

6-11



6 Scientific Data

Importing NetCDF Files and OPeNDAP Data

In this section...

“Overview” on page 6-12

“Using the MATLAB High-Level NetCDF Functions to Import Data” on
page 6-12

“Using the MATLAB Low-Level NetCDF Functions to Import Data” on
page 6-14

“Troubleshooting OPeNDAP Connections” on page 6-20

Overview
Network Common Data Form (NetCDF) is a set of software libraries and
machine-independent data formats that support the creation, access, and
sharing of array-oriented scientific data. NetCDF is used by a wide range of
engineering and scientific fields that want a standard way to store data so
that it can be shared. For more information, read the NetCDF documentation
available at the Unidata Web site.

MATLAB provides two methods to import data from a NetCDF file or from
an OPeNDAP source:

• High-level functions that simplify the process of importing data

• Low-level functions that enable more complete control over the importing
process, by providing access to the routines in the NetCDF C library

Note For information about importing to Common Data Format (CDF) files,
which have a completely separate, incompatible format, see “Importing CDF
Files” on page 6-2.

Using the MATLAB High-Level NetCDF Functions to
Import Data
MATLAB includes several functions that you can use to examine the contents
of a NetCDF file and import data from the file into the MATLAB workspace.

6-12

http://www.unidata.ucar.edu/software/netcdf/


Importing NetCDF Files and OPeNDAP Data

• ncdisp— View the contents of a NetCDF file or OPeNDAP URL

• ncinfo— Create a structure that contains all the metadata that defines a
NetCDF file

• ncread— Read data from a variable in a NetCDF file or OPeNDAP URL

• ncreadatt— Read data from an attribute associated with a variable in a
NetCDF file or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which
include examples. The following section illustrates how to use these functions
to perform a common task: finding all the unlimited dimensions in a NetCDF
file.

Finding All Unlimited Dimensions in a NetCDF File
This example shows how to find all unlimited dimensions in an existing
NetCDF file, visually and programmatically.

1 To determine which dimensions in a NetCDF file are unlimited, display the
contents of the example NetCDF file, using ncdisp. The ncdisp function
identifies unlimited dimensions with the label UNLIMITED.

Source:
\\matlabroot\toolbox\matlab\demos\example.nc

Format:
netcdf4

Global Attributes:
creation_date = '29-Mar-2010'

Dimensions:
x = 50
y = 50
z = 5

.

.

.
Groups:

/grid2/
Attributes:

description = 'This is another group attribute.'

6-13



6 Scientific Data

Dimensions:
x = 360
y = 180
time = 0 (UNLIMITED)

Variables:
temp

Size: []
Dimensions: x,y,time
Datatype: int16

2 To determine all unlimited dimensions programmatically, first get
information about the file using ncinfo. This example gets information
about a particular group in the file.

ginfo = ncinfo('example.nc','/grid2/');

3 Get a vector of the Boolean values that indicate, for this group, which
dimension is unlimited.

unlimDims = [finfo.Dimensions.Unlimited]

unlimDims =

0 0 1

4 Use this vector to display the unlimited dimension.

disp(ginfo.Dimensions(unlimDims))
Name: 'time'

Length: 0
Unlimited: 1

Using the MATLAB Low-Level NetCDF Functions to
Import Data
MATLAB provides access to the routines in the NetCDF C library that you
can use to read data from NetCDF files and write data to NetCDF files.
MATLAB provides this access through a set of MATLAB functions that
correspond to the functions in the NetCDF C library. MATLAB groups the
functions into a package, called netcdf. To call one of the functions in the

6-14



Importing NetCDF Files and OPeNDAP Data

package, you must specify the package name. For a complete list of all the
functions, see netcdf.

This section does not describe all features of the NetCDF library or explain
basic NetCDF programming concepts. To use the MATLAB NetCDF functions
effectively, you should be familiar with the information about NetCDF
contained in the NetCDF C Interface Guide.

Mapping NetCDF API Syntax to MATLAB Function Syntax
For the most part, the MATLAB NetCDF functions correspond directly to
routines in the NetCDF C library. For example, the MATLAB function
netcdf.open corresponds to the NetCDF library routine nc_open. In some
cases, one MATLAB function corresponds to a group of NetCDF library
functions. For example, instead of creating MATLAB versions of every
NetCDF library nc_put_att_type function, where type represents a data
type, MATLAB uses one function, netcdf.putAtt, to handle all supported
data types.

The syntax of the MATLAB functions is similar to the NetCDF library
routines, with some exceptions. For example, the NetCDF C library routines
use input parameters to return data, while their MATLAB counterparts
use one or more return values. For example, the following is the function
signature of the nc_open routine in the NetCDF library. Note how the
NetCDF file identifier is returned in the ncidp argument.

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */

The following shows the signature of the corresponding MATLAB function,
netcdf.open. Like its NetCDF C library counterpart, the MATLAB NetCDF
function accepts a character string that specifies the file name and a
constant that specifies the access mode. Note, however, that the MATLAB
netcdf.open function returns the file identifier, ncid, as a return value.

ncid = netcdf.open(filename, mode)

To see a list of all the functions in the MATLAB NetCDF package, see the
netcdf reference page.

6-15

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/


6 Scientific Data

Exploring the Contents of a NetCDF File
This example shows how to use the MATLAB NetCDF functions to explore the
contents of a NetCDF file. The section uses the example NetCDF file included
with MATLAB, example.nc, as an illustration. For an example of reading
data from a NetCDF file, see “Reading Data from a NetCDF File” on page 6-19

1 Open the NetCDF file using the netcdf.open function. This function
returns an identifier that you use thereafter to refer to the file. The
example opens the file for read-only access, but you can specify other access
modes. For more information about modes, see netcdf.open.

ncid = netcdf.open('example.nc','NC_NOWRITE');

2 Explore the contents of the file using the netcdf.inq function. This
function returns the number of dimensions, variables, and global attributes
in the file, and returns the identifier of the unlimited dimension in the file.
(An unlimited dimension can grow.)

[ndims,nvars,natts,unlimdimID]= netcdf.inq(ncid)
ndims =

3

nvars =

3

natts =

1

unlimdimID =

-1

3 Get more information about the dimensions, variables, and global
attributes in the file by using NetCDF inquiry functions. For example,

6-16



Importing NetCDF Files and OPeNDAP Data

to get information about the global attribute, first get the name of the
attribute, using the netcdf.inqAttName function. After you get the name,
'creation_date' in this case, you can use the netcdf.inqAtt function to
get information about the data type and length of the attribute.

To get the name of an attribute, you must specify the ID of the variable
the attribute is associated with and the attribute number. To access a
global attribute, which isn’t associated with a particular variable, use
the constant 'NC_GLOBAL' as the variable ID. The attribute number is
a zero-based index that identifies the attribute. For example, the first
attribute has the index value 0, and so on.

global_att_name = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

global_att_name =

creation_date

[xtype attlen] = netcdf.inqAtt(ncid,netcdf.getConstant('NC_GLOBAL'),global_att_name)

xtype =

2

attlen =

11

4 Get the value of the attribute, using the netcdf.getAtt function.

global_att_value = netcdf.getAtt(ncid,netcdf.getConstant('NC_GLOBAL'),global_att_name)

global_att_value =

29-Mar-2010

5 Get information about the dimensions defined in the file through a series
of calls to netcdf.inqDim. This function returns the name and length of
the dimension. The netcdf.inqDim function requires the dimension ID,

6-17



6 Scientific Data

which is a zero-based index that identifies the dimensions. For example,
the first dimension has the index value 0, and so on.

[dimname, dimlen] = netcdf.inqDim(ncid,0)

dimname =

x

dimlen =

50

6 Get information about the variables in the file through a series of calls to
netcdf.inqVar. This function returns the name, data type, dimension
ID, and the number of attributes associated with the variable. The
netcdf.inqVar function requires the variable ID, which is a zero-based
index that identifies the variables. For example, the first variable has
the index value 0, and so on.

[varname, vartype, dimids, natts] = netcdf.inqVar(ncid,0)

varname =

avagadros_number

vartype =

6

dimids =

[]

natts =

1

6-18



Importing NetCDF Files and OPeNDAP Data

The data type information returned in vartype is the numeric value of
the NetCDF data type constants, such as, NC_INT and NC_BYTE. See the
NetCDF documentation for information about these constants.

Reading Data from a NetCDF File
After you understand the contents of a NetCDF file, by using the inquiry
functions, you can retrieve the data from the variables and attributes in the
file. To read the data associated with the variable avagadros_number in the
example file, use the netcdf.getVar function. The following example uses
the NetCDF file identifier returned in the previous section, “Exploring the
Contents of a NetCDF File” on page 6-16. The variable ID is a zero-based
index that identifies the variables. For example, the first variable has the
index value 0, and so on. (To learn how to write data to a NetCDF file, see
“Exporting (Writing) Data to a NetCDF File” on page 6-26.)

A_number = netcdf.getVar(ncid,0)

A_number =

6.0221e+023

The NetCDF functions automatically choose the MATLAB class that best
matches the NetCDF data type, but you can also specify the class of the return
data by using an optional argument to netcdf.getVar. The following table
shows the default mapping. For more information about NetCDF data types,
see the NetCDF C Interface Guide.

NetCDF Data Type MATLAB Class Notes

NC_BYTE int8 or uint8 NetCDF interprets byte data as
either signed or unsigned.

NC_CHAR char

NC_SHORT int16

NC_INT int32

NC_FLOAT single

NC_DOUBLE double

6-19

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/


6 Scientific Data

Troubleshooting OPeNDAP Connections
If you have trouble reading OPeNDAP data, consider the following:

• OPeNDAP data is being pulled over the network from a server on the
Internet. Pulling large data could be slow. Speed and reliability depends
on their network connection

• OPeNDAP capability does not support proxy servers or any kind of
authentication

• Failure to open an OPeNDAP link could have multiple causes:

- Invalid URL

- Local machine firewall/network firewall does not allow any external
connections.

- Local machine firewall/network firewall does not allow external
connections on the OPeNDAP protocol.

- Remote server is down.

- Remote server will not serve the amount of data being requested. In this
case, you can read data in subsets or chunks.

- Remote server is incorrectly configured.

6-20



Exporting to NetCDF Files

Exporting to NetCDF Files

In this section...

“Overview” on page 6-21

“Using the NetCDF High-Level Functions to Export Data” on page 6-21

“Using the NetCDF Low-Level Functions to Export Data” on page 6-26

Overview
Network Common Data Form (NetCDF) is a set of software libraries and
machine-independent data formats that support the creation, access, and
sharing of array-oriented scientific data. NetCDF is used by a wide range of
engineering and scientific fields that want a standard way to store data so
that it can be shared. For more information, read the NetCDF documentation
available at the Unidata Web site.

MATLAB provides two methods to export data from the workspace into a
NetCDF file:

• High-level functions that make it easy to export data

• Low-level functions that provide access to routines in the NetCDF C library

Note For information about exporting to Common Data Format (CDF) files,
which have a completely separate and incompatible format, see “Exporting to
NetCDF Files” on page 6-21.

Using the NetCDF High-Level Functions to Export Data
MATLAB includes several functions that you can use to export data from
the file into the MATLAB workspace.

• nccreate— Create a variable in a NetCDF file. If the file does not exist,
nccreate creates it.

• ncwrite — Write data to a NetCDF file

6-21

http://www.unidata.ucar.edu/software/netcdf/


6 Scientific Data

• ncwriteatt— Write data to an attribute associated with a variable in a
NetCDF file or with the file itself (global attribute)

• ncwriteschema— Add a NetCDF schema to a NetCDF file, or create a new
file using the schema as a template.

For details about how to use these functions, see their reference pages. These
pages include examples. For information about importing (reading) data
from a NetCDF file, see “Using the MATLAB High-Level NetCDF Functions
to Import Data” on page 6-12. The following examples illustrate how to use
these functions to perform several common scenarios:

• “Creating a New NetCDF File from an Existing File or Template” on page
6-22

• “Converting Between NetCDF File Formats” on page 6-23

• “Merging Two NetCDF Files” on page 6-24

Creating a New NetCDF File from an Existing File or Template
This example describes how to create a new file based on an existing file
(or template).

1 Read the variable, dimension, and group definitions from the file using
ncinfo. This information defines the file’s schema.

finfo = ncinfo('example.nc');

2 Create a new NetCDF file that uses this schema, using ncwriteschema.

ncwriteschema('mynewfile.nc',finfo);

3 View the existing file and the new file, using ncdisp. You can see how the
new file contains the same set of dimensions, variables, and groups as
the existing file.

Note A schema defines the structure of the file but does not contain any
of the data that was in the original file.

6-22



Exporting to NetCDF Files

ncdisp('example.nc')
ncdisp('mynewfile.nc')

Converting Between NetCDF File Formats
This example shows how to convert an existing file from one format to another.

Note When you convert a file’s format using ncwriteschema, you might
get a warning message, if the original file format includes fields that
are not supported by the new format. For example, the netcdf4 format
supports fill values but the NetCDF classic format does not. In these cases,
ncwriteschema still creates the file, but leaves out the field that is undefined
in the new format.

1 Create a new file containing one variable, using the nccreate function.

nccreate('ex1.nc','myvar');

2 Determine the format of the new file, using ncinfo.

finfo = ncinfo('ex1.nc');
file_fmt = finfo.Format

file_fmt =

netcdf4_classic

3 Change the value of the Format field in the finfo structure to another
supported NetCDF format. You use the finfo structure to specify the
new format.

finfo.Format = 'netcdf4';

4 Create a new version of the file that uses the new format, using the
ncwriteschema function.

finfo = ncwriteschema('newfile.nc',finfo);
finfo = ncinfo('newfile.nc');
new_fmt = finfo.Format

6-23



6 Scientific Data

file_fmt =

netcdf4

Note The new file contains the variable and dimension definitions of the
original file, but does not contain the data. You must write the data to
the file.

Merging Two NetCDF Files
This example shows how to merge two NetCDF files.

Note The combined file contains the variable and dimension definitions of the
files that are combined, but does not contain the data in these original files.

1 Create a file, define a variable in the file, and write data to the variable.

nccreate('ex1.nc','myvar');
ncwrite('ex1.nc','myvar',55)
ncdisp('ex1.nc')

2 Create a second file, with another variable, and write data to it.

nccreate('ex2.nc','myvar2');
ncwrite('ex2.nc','myvar2',99)
ncdisp('ex2.nc')

3 Get the schema of each of the newly created files, using ncinfo.

finfo1 = ncinfo('ex1.nc')

finfo1 =

Filename: 'H:\file1.nc'
Name: '/'

Dimensions: []
Variables: [1x1 struct]

6-24



Exporting to NetCDF Files

Attributes: []
Groups: []
Format: 'netcdf4_classic'

finfo2 = ncinfo('file2.nc')

finfo2 =

Filename: 'H:\file2.nc'
Name: '/'

Dimensions: []
Variables: [1x1 struct]

Attributes: []
Groups: []
Format: 'netcdf4_classic'

4 Create a new NetCDF file that uses the schema of the first example file,
using ncwriteschema.

ncwriteschema('combined_file.nc',finfo1);

ncdisp('combined_file.nc')
Source:

H:\combined_file.nc
Format:

netcdf4_classic
Variables:

myvar1
Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.97e+036

5 Add the schema from the second example file to the newly created file,
using ncwriteschema. When you view the contents, notice how the file now
contains the variable defined in the first example file and the variable
defined in the second file.

ncwriteschema('combined_file.nc',finfo2);

6-25



6 Scientific Data

ncdisp('combined_file.nc')
Source:

H:\combined_file.nc
Format:

netcdf4_classic
Variables:

myvar1
Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.97e+036
myvar2

Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.97e+036

Using the NetCDF Low-Level Functions to Export Data
MATLAB provides access to the routines in the NetCDF C library that you
can use to read data from NetCDF files and write data to NetCDF files.
MATLAB provides this access through a set of MATLAB functions that
correspond to the functions in the NetCDF C library. MATLAB groups the
functions into a package, called netcdf. To call one of the functions in the
package, you must specify the package name. For a complete list of all the
functions, see netcdf.

This section does not describe all features of the NetCDF library or explain
basic NetCDF programming concepts. To use the MATLAB NetCDF functions
effectively, you should be familiar with the information about NetCDF
contained in the NetCDF C Interface Guide.

Exporting (Writing) Data to a NetCDF File
To store data in a NetCDF file, you can use the MATLAB NetCDF functions
to create a file, define dimensions in the file, create a variable in the file, and
write data to the variable. Note that you must define dimensions in the file

6-26

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/


Exporting to NetCDF Files

before you can create variables. To run the following example, you must have
write permission in your current folder.

1 Create a variable in the MATLAB workspace. This example creates a
50-element vector of numeric values named my_data. The vector is of class
double.

my_data = linspace(0,49,50);

2 Create a NetCDF file (or open an existing file). The example uses the
netcdf.create function to create a new file, named my_file.nc. The
NOCLOBBER parameter is a NetCDF file access constant that indicates that
you do not want to overwrite an existing file with the same name. See
netcdf.create for more information about these file access constants.

ncid = netcdf.create('my_file.nc','NOCLOBBER');

When you create a NetCDF file, the file opens in define mode. You must be
in define mode to define dimensions and variables.

3 Define a dimension in the file, using the netcdf.defDim function. You
must define dimensions in the file before you can define variables and write
data to the file. When you define a dimension, you give it a name and a
length. To create an unlimited dimension, i.e., a dimension that can grow,
specify the constant NC_UNLIMITED in place of the dimension length.

dimid = netcdf.defDim(ncid,'my_dim',50);

4 Define a variable on the dimension, using the netcdf.defVar function.
When you define a variable, you give it a name, data type, and a dimension
ID.

varid = netcdf.defVar(ncid,'my_var','NC_BYTE',dimid);

You must use one of the NetCDF constants to specify the data type, listed
in the following table.

6-27



6 Scientific Data

MATLAB Class NetCDF Data Type

int8 NC_BYTE1

uint8 NC_BYTE2

char NC_CHAR

int16 NC_SHORT

uint16 No equivalent

int32 NC_INT

uint32 No equivalent

int64 No equivalent

uint64 No equivalent

single NC_FLOAT

double NC_DOUBLE

5 Take the NetCDF file out of define mode. To write data to a file, you must
be in data mode.

netcdf.endDef(ncid);

6 Write the data from the MATLAB workspace into the variable in the
NetCDF file, using the netcdf.putVar function. Note that the data in the
workspace is of class double but the variable in the NetCDF file is of type
NC_BYTE. The MATLAB NetCDF functions automatically do the conversion.

netcdf.putVar(ncid,varid,my_data);

7 Close the file, using the netcdf.close function.

netcdf.close(ncid);

8 Verify that the data was written to the file by opening the file and reading
the data from the variable into a new variable in the MATLAB workspace.

1. NetCDF interprets byte data as either signed or unsigned.

2. NetCDF interprets byte data as either signed or unsigned.

6-28



Exporting to NetCDF Files

Because the variable is the first variable in the file (and the only one), you
can specify 0 (zero) for the variable ID—identifiers are zero-based indexes.

ncid2 = netcdf.open('my_file.nc','NC_NOWRITE');

data_in_file = netcdf.getVar(ncid2,0)

data_in_file =

0
1
2
3
4
5
6
7
8
9
.
.
.

Because you stored the data in the file as NC_BYTE, MATLAB reads the
data from the variable into the workspace as class int8.

6-29



6 Scientific Data

Importing Flexible Image Transport System (FITS) Files
The FITS file format is the standard data format used in astronomy,
endorsed by both NASA and the International Astronomical Union (IAU).
For more information about the FITS standard, go to the FITS Web site,
http://fits.gsfc.nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of
multidimensional arrays (1-D spectra, 2-D images, or 3-D data cubes) and
two-dimensional tables containing rows and columns of data. A data file in
FITS format can contain multiple components, each marked by an ASCII text
header followed by binary data. The first component in a FITS file is known
as the primary, which can be followed by any number of other components,
called extensions, in FITS terminology. For a complete list of extensions,
see fitsread.

To get information about the contents of a Flexible Image Transport System
(FITS) file, use the fitsinfo function. The fitsinfo function returns a
structure containing the information about the file and detailed information
about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport
System (FITS) file, use the fitsread function. Using this function, you can
import the primary data in the file or you can import the data in any of the
extensions in the file, such as the Image extension, as shown in this example.

1 Determine which extensions the FITS file contains, using the fitsinfo
function.

info = fitsinfo('tst0012.fits')

info =

Filename: 'matlabroot\tst0012.fits'

FileModDate: '12-Mar-2001 19:37:46'

FileSize: 109440

Contents: {'Primary' 'Binary Table' 'Unknown' 'Image' 'ASCII Table'}

PrimaryData: [1x1 struct]

BinaryTable: [1x1 struct]

Unknown: [1x1 struct]

6-30

http://fits.gsfc.nasa.gov/


Importing Flexible Image Transport System (FITS) Files

Image: [1x1 struct]

AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including
the Binary Table, ASCII Table, and Image extensions.

2 Read data from the file.

To read the Primary data in the file, specify the filename as the only
argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the
extension as an optional parameter. This example reads the Binary Table
extension from the FITS file:

bindata = fitsread('tst0012.fits','binarytable');

6-31



6 Scientific Data

Importing HDF5 Files

In this section...

“Overview” on page 6-32

“Using the High-Level HDF5 Functions to Import Data” on page 6-32

“Using the Low-Level HDF5 Functions to Import Data” on page 6-39

Overview
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed
by the National Center for Supercomputing Applications (NCSA). HDF5 is
used by a wide range of engineering and scientific fields that want a standard
way to store data so that it can be shared. For more information about the
HDF5 file format, read the HDF5 documentation available at the HDF Web
site (http://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:

• High-level functions that make it easy to import data, when working with
numeric datasets

• Low-level functions that enable more complete control over the importing
process, by providing access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a completely
separate, incompatible format, see “Import HDF4 Files Programatically”
on page 6-52.

Using the High-Level HDF5 Functions to Import Data
MATLAB includes several functions that you can use to examine the contents
of an HDF5 file and import data from the file into the MATLAB workspace.

6-32

http://www.hdfgroup.org


Importing HDF5 Files

Note You can only use the high-level functions to read numeric datasets or
attributes. To read non-numeric datasets or attributes, you must use the
low-level interface.

• h5disp — View the contents of an HDF5 file

• h5info — Create a structure that contains all the metadata defining an
HDF5 file

• h5read— Read data from a variable in an HDF5 file

• h5readatt— Read data from an attribute associated with a variable in an
HDF5 file or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which
include examples. The following sections illustrate some common usage
scenarios.

Determining the Contents of an HDF5 File
HDF5 files can contain data and metadata, called attributes. HDF5 files
organize the data and metadata in a hierarchical structure similar to the
hierarchical structure of a UNIX file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group
can contain other groups, data sets, attributes, links, and data types. A data
set is a collection of data, such as a multidimensional numeric array or string.
An attribute is any data that is associated with another entity, such as a data
set. A link is similar to a UNIX file system symbolic link. Links are a way to
reference objects without having to make a copy of the object.

Data types are a description of the data in the data set or attribute. Data
types tell how to interpret the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.

h5disp('example.h5')

HDF5 example.h5
Group '/'

6-33



6 Scientific Data

Attributes:
'attr1': 97 98 99 100 101 102 103 104 105 0
'attr2': 2x2 H5T_INTEGER

Group '/g1'
Group '/g1/g1.1'

Dataset 'dset1.1.1'
Size: 10x10
MaxSize: 10x10
Datatype: H5T_STD_I32BE (int32)
ChunkSize: []
Filters: none
Attributes:

'attr1': 49 115 116 32 97 116 116 114 105 ...
'attr2': 50 110 100 32 97 116 116 114 105 ...

Dataset 'dset1.1.2'
Size: 20
MaxSize: 20
Datatype: H5T_STD_I32BE (int32)
ChunkSize: []
Filters: none

Group '/g1/g1.2'
Group '/g1/g1.2/g1.2.1'

Link 'slink'
Type: soft link

Group '/g2'
Dataset 'dset2.1'

Size: 10
MaxSize: 10
Datatype: H5T_IEEE_F32BE (single)
ChunkSize: []
Filters: none

Dataset 'dset2.2'
Size: 5x3
MaxSize: 5x3
Datatype: H5T_IEEE_F32BE (single)
ChunkSize: []
Filters: none

.

.

.

6-34



Importing HDF5 Files

To explore the hierarchical organization of an HDF5 file, use the h5info
function. h5info returns a structure that contains various information about
the HDF5 file, including the name of the file.

info = h5info('example.h5')
info =

Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5'
Name: '/'

Groups: [4x1 struct]
Datasets: []

Datatypes: []
Links: []

Attributes: [2x1 struct]

By looking at the Groups and Attributes fields, you can see that the file
contains four groups and two attributes. The Datasets, Datatypes, and
Links fields are all empty, indicating that the root group does not contain any
data sets, data types, or links. To explore the contents of the sample HDF5
file further, examine one of the structures in Groups. The following example
shows the contents of the second structure in this field.

level2 = info.Groups(2)

level2 =

Name: '/g2'
Groups: []

Datasets: [2x1 struct]
Datatypes: []

Links: []
Attributes: []

6-35



6 Scientific Data

In the sample file, the group named /g2 contains two data sets. The following
figure illustrates this part of the sample HDF5 file organization.

�

����� ����� ��� ��	 ��
���

��
���� ��
����

To get information about a data set, such as its name, dimensions, and data
type, look at either of the structures returned in the Datasets field.

dataset1 = level2.Datasets(1)

dataset1 =
Filename: 'matlabroot\example.h5'

Name: '/g2/dset2.1'
Rank: 1

Datatype: [1x1 struct]
Dims: 10

MaxDims: 10
Layout: 'contiguous'

Attributes: []
Links: []

Chunksize: []
Fillvalue: []

Importing Data from an HDF5 File
To read data or metadata from an HDF5 file, use the h5read function. As
arguments, specify the name of the HDF5 file and the name of the data set.
(To read the value of an attribute, you must use h5readatt.)

6-36



Importing HDF5 Files

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5
sample file example.h5.

data = h5read('example.h5','/g2/dset2.1')

data =

1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000

Mapping HDF5 Datatypes to MATLAB Datatypes
When the h5read function reads data from an HDF5 file into the MATLAB
workspace, it maps HDF5 data types toMATLAB data types, as shown in
the table below.

HDF5 Data Type h5read Returns

Bit-field Array of packed 8-bit integers

Float MATLAB single and double types, provided
that they occupy 64 bits or fewer

Integer types, signed and
unsigned

Equivalent MATLAB integer types, signed
and unsigned

Opaque Array of uint8 values

Reference Returns the actual data pointed to by the
reference, not the value of the reference.

Strings, fixed-length and
variable length

Cell array of strings

6-37



6 Scientific Data

HDF5 Data Type h5read Returns

Enums Cell array of strings, where each enumerated
value is replaced by the corresponding member
name

Compound 1-by-1 struct array; the dimensions of the
dataset are expressed in the fields of the
structure.

Arrays Array of values using the same datatype as
the HDF5 array. For example, if the array is
of signed 32-bit integers, the MATLAB array
will be of type int32.

The example HDF5 file included with MATLAB includes examples of all
these datatypes.

For example, the data set /g3/string is a string.

h5disp('example.h5','/g3/string')
HDF5 example.h5
Dataset 'string'

Size: 2
MaxSize: 2
Datatype: H5T_STRING

String Length: 3
Padding: H5T_STR_NULLTERM
Character Set: H5T_CSET_ASCII
Character Type: H5T_C_S1

ChunkSize: []
Filters: none
FillValue: ''

Now read the data from the file, MATLAB returns it as a cell array of strings.

s = h5read('example.h5','/g3/string')

s =

'ab '

6-38



Importing HDF5 Files

'de '

>> whos s
Name Size Bytes Class Attributes

s 2x1 236 cell

The compound data types are always returned as a 1-by-1 struct. The
dimensions of the data set are expressed in the fields of the struct. For
example, the data set /g3/compound2D is a compound datatype.

h5disp('example.h5','/g3/compound2D')
HDF5 example.h5
Dataset 'compound2D'

Size: 2x3
MaxSize: 2x3
Datatype: H5T_COMPOUND

Member 'a': H5T_STD_I8LE (int8)
Member 'b': H5T_IEEE_F64LE (double)

ChunkSize: []
Filters: none
FillValue: H5T_COMPOUND

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.

data = h5read('example.h5','/g3/compound2D')

data =

a: [2x3 int8]
b: [2x3 double]

Using the Low-Level HDF5 Functions to Import Data
MATLAB provides direct access to dozens of functions in the HDF5 library
with low-level functions that correspond to the functions in the HDF5
library. In this way, you can access the features of the HDF5 library from
MATLAB, such as reading and writing complex data types and using the
HDF5 subsetting capabilities. For more information, see “Using the MATLAB
Low-Level HDF5 Functions to Export Data” on page 6-41.

6-39



6 Scientific Data

Exporting to HDF5 Files

In this section...

“Overview” on page 6-40

“Using the MATLAB High-Level HDF5 Functions to Export Data” on page
6-40

“Using the MATLAB Low-Level HDF5 Functions to Export Data” on page
6-41

Overview
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed
by the National Center for Supercomputing Applications (NCSA). HDF5 is
used by a wide range of engineering and scientific fields that want a standard
way to store data so that it can be shared. For more information about the
HDF5 file format, read the HDF5 documentation available at the HDF Web
site (http://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:

• High-level functions that simplify the process of exporting data, when
working with numeric datasets

• Low-level functions that provide a MATLAB interface to routines in the
HDF5 C library

Note For information about exporting to HDF4 files, which have a completely
separate and incompatible format, see “Export to HDF4 Files” on page 6-82.

Using the MATLAB High-Level HDF5 Functions to
Export Data
The easiest way to write data or metadata from the MATLAB workspace to
an HDF5 file is to use these MATLAB high-level functions.

6-40

http://www.hdfgroup.org


Exporting to HDF5 Files

Note You can use the high-level functions only with numeric data. To write
nonnumeric data, you must use the low-level interface.

• h5create — Create an HDF5 dataset

• h5write — Write data to an HDF5 dataset

• h5writeatt — Write data to an HDF5 attribute

For details about how to use these functions, see their reference pages, which
include examples. The following sections illustrate some common usage
scenarios.

Writing a Numeric Array to an HDF5 Dataset
This example creates an array and then writes the array to an HDF5 file.

1 Create a MATLAB variable in the workspace. This example creates a 5-by-5
array of uint8 values.

testdata = uint8(magic(5))

2 Create the HDF5 file and the dataset, using h5create.

h5create('my_example_file.h5', '/dataset1', size(testdata))

3 Write the data to the HDF5 file.

h5write('my_example_file.h5', '/dataset1', testdata)

Using the MATLAB Low-Level HDF5 Functions to
Export Data
MATLAB provides direct access to dozens of functions in the HDF5 library
with low-level functions that correspond to the functions in the HDF5
library. In this way, you can access the features of the HDF5 library from
MATLAB, such as reading and writing complex data types and using the
HDF5 subsetting capabilities. For more information, see “Using the MATLAB
Low-Level HDF5 Functions to Export Data” on page 6-41.

6-41



6 Scientific Data

The HDF5 library organizes the library functions into collections, called
interfaces. For example, all the routines related to working with files, such
as opening and closing, are in the H5F interface, where F stands for file.
MATLAB organizes the low-level HDF5 functions into classes that correspond
to each HDF5 interface. For example, the MATLAB functions that correspond
to the HDF5 file interface (H5F) are in the @H5F class folder.

The following sections provide more detail about how to use the MATLAB
HDF5 low-level functions.

• “Mapping HDF5 Function Syntax to MATLAB Function Syntax” on page
6-42

• “Mapping Between HDF5 Data Types and MATLAB Data Types” on page
6-45

• “Reporting Data Set Dimensions” on page 6-46

• “Writing Data to an HDF5 Data Set Using the MATLAB Low-Level
Functions” on page 6-47

• “Preserving the Correct Layout of Your Data” on page 6-50

Note This section does not describe all features of the HDF5 library or
explain basic HDF5 programming concepts. To use the MATLAB HDF5
low-level functions effectively, refer to the official HDF5 documentation
available at http://www.hdfgroup.org.

Mapping HDF5 Function Syntax to MATLAB Function Syntax
In most cases, the syntax of the MATLAB low-level HDF5 functions matches
the syntax of the corresponding HDF5 library functions. For example, the
following is the function signature of the H5Fopen function in the HDF5
library. In the HDF5 function signatures, hid_t and herr_t are HDF5 types
that return numeric values that represent object identifiers or error status
values.

hid_t H5Fopen(const char *name, unsigned flags, hid_t access_id) /* C syntax */

6-42

http://www.hdfgroup.org


Exporting to HDF5 Files

In MATLAB, each function in an HDF5 interface is a method of a MATLAB
class. To view the function signature for a function, specify the class folder
name and then the function name, as in the following.

help @H5F/open

The following shows the signature of the corresponding MATLAB function.
First note that, because it’s a method of a class, you must use the dot notation
to call the MATLAB function: H5F.open. This MATLAB function accepts the
same three arguments as the HDF5 function: a text string for the name,
an HDF5-defined constant for the flags argument, and an HDF5 property
list ID. You use property lists to specify characteristics of many different
HDF5 objects. In this case, it’s a file access property list. Refer to the HDF5
documentation to see which constants can be used with a particular function
and note that, in MATLAB, constants are passed as text strings.

file_id = H5F.open(name, flags, plist_id)

There are, however, some functions where the MATLAB function signature
is different than the corresponding HDF5 library function. The following
describes some general differences that you should keep in mind when using
the MATLAB low-level HDF5 functions.

• HDF5 output parameters become MATLAB return values — Some
HDF5 library functions use function parameters to return data. Because
MATLAB functions can return multiple values, these output parameters
become return values. To illustrate, the HDF5 H5Dread function returns
data in the buf parameter.

herr_t H5Dread(hid_t dataset_id,

hid_t mem_type_id,

hid_t mem_space_id,

hid_t file_space_id,

hid_t xfer_plist_id,

void * buf ) /* C syntax */

The corresponding MATLAB function changes the output parameter buf
into a return value. Also, in the MATLAB function, the nonzero or negative
value herr_t return values become MATLAB errors. Use MATLAB
try-catch statements to handle errors.

6-43



6 Scientific Data

buf = H5D.read(dataset_id,

mem_type_id,

mem_space_id,

file_space_id,

plist_id)

• String length parameters are unnecessary — The length parameter,
used by some HDF5 library functions to specify the length of a string
parameter, is not necessary in the corresponding MATLAB function. For
example, the H5Aget_name function in the HDF5 library includes a buffer
as an output parameter and the size of the buffer as an input parameter.

ssize_t H5Aget_name(hid_t attr_id,

size_t buf_size,

char *buf ) /* C syntax */

The corresponding MATLAB function changes the output parameter buf
into a return value and drops the buf_size parameter.

buf = H5A.get_name(attr_id)

• Use an empty array to specify NULL — Wherever HDF5 library
functions accept the value NULL, the corresponding MATLAB function uses
empty arrays ([]). For example, the H5Dfill function in the HDF5 library
accepts the value NULL in place of a specified fill value.

herr_t H5Dfill(const void *fill,

hid_t fill_type_id, void *buf,

hid_t buf_type_id,

hid_t space_id ) /* C syntax */

When using the corresponding MATLAB function, you can specify an
empty array ([]) instead of NULL.

• Use cell arrays to specify multiple constants— Some functions in the
HDF5 library require you to specify an array of constants. For example,
in the H5Screate_simple function, to specify that a dimension in the
data space can be unlimited, you use the constant H5S_UNLIMITED for the
dimension in maxdims. In MATLAB, because you pass constants as text
strings, you must use a cell array to achieve the same result. The following
code fragment provides an example of using a cell array to specify this
constant for each dimension of this data space.

6-44



Exporting to HDF5 Files

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

Mapping Between HDF5 Data Types and MATLAB Data Types
When the HDF5 low-level functions read data from an HDF5 file or write
data to an HDF5 file, the functions map HDF5 data types to MATLAB data
types automatically.

For atomic data types, such as commonly used binary formats for numbers
(integers and floating point) and characters (ASCII), the mapping is typically
straightforward because MATLAB supports similar types. See the table
Mapping Between HDF5 Atomic Data Types and MATLAB® Data Types on
page 6-45 for a list of these mappings.

Mapping Between HDF5 Atomic Data Types and MATLAB Data Types

HDF5 Atomic
Data Type

MATLAB Data Type

Bit-field Array of packed 8-bit integers

Float MATLAB single and double types, provided that they
occupy 64 bits or fewer

Integer types,
signed and
unsigned

Equivalent MATLAB integer types, signed and
unsigned

Opaque Array of uint8 values

Reference Array of uint8 values

String MATLAB character arrays

For composite data types, such as aggregations of one or more atomic data
types into structures, multidimensional arrays, and variable-length data
types (one-dimensional arrays), the mapping is sometimes ambiguous with
reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing
a single uint8 value in each element is distinct from a 1-by-1 data set
containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value. In the second case, the data set

6-45



6 Scientific Data

contains a single observation with 25 values. In MATLAB both of these data
sets are represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data
types directly to make sure you have the mapping you intend. See the table
Mapping Between HDF5 Composite Data Types and MATLAB® Data Types
on page 6-46 for a list of the default mappings. You can specify the data type
when you write data to the file using the H5Dwrite function. See the HDF5
data type interface documentation for more information.

Mapping Between HDF5 Composite Data Types and MATLAB Data
Types

HDF5 Composite
Data Type

MATLAB Data Type

Array Extends the dimensionality of the data type which
it contains. For example, an array of an array of
integers in HDF5 would map onto a two dimensional
array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing
HDF5 data in MATLAB are scalar.

Enumeration Array of integers which each have an associated name

Variable Length MATLAB 1-D cell arrays

Reporting Data Set Dimensions
The MATLAB low-level HDF5 functions report data set dimensions and the
shape of data sets differently than the MATLAB high-level functions. For
ease of use, the MATLAB high-level functions report data set dimensions
consistent with MATLAB column-major indexing. To be consistent with
the HDF5 library, and to support the possibility of nested data sets and
complicated data types, the MATLAB low-level functions report array
dimensions using the C row-major orientation.

6-46



Exporting to HDF5 Files

Writing Data to an HDF5 Data Set Using the MATLAB Low-Level
Functions
This example shows how to use the MATLAB HDF5 low-level functions to
write a data set to an HDF5 file and then read the data set from the file.

1 Create the MATLAB variable that you want to write to the HDF5 file. The
examples creates a two-dimensional array of uint8 data.

testdata = [1 3 5; 2 4 6];

2 Create the HDF5 file or open an existing file. The example creates a new
HDF5 file, named my_file.h5, in the system temp folder.

filename = fullfile(tempdir,'my_file.h5');

fileID = H5F.create(filename,'H5F_ACC_TRUNC','H5P_DEFAULT','H5P_DEFAULT');

In HDF5, use the H5Fcreate function to create a file. The example uses
the MATLAB equivalent, H5F.create. As arguments, specify the name
you want to assign to the file, the type of access you want to the file
('H5F_ACC_TRUNC' in the example), and optional additional characteristics
specified by a file creation property list and a file access property list. This
example uses default values for these property lists ('H5P_DEFAULT').
In the example, note how the C constants are passed to the MATLAB
functions as strings. The function returns an ID to the HDF5 file.

3 Create the data set in the file to hold the MATLAB variable. In the HDF5
programming model, you must define the data type and dimensionality
(data space) of the data set as separate entities.

a Specify the data type used by the data set. In HDF5, use the H5Tcopy
function to create integer or floating-point data types. The example uses
the corresponding MATLAB function, H5T.copy, to create a double
data type because the MATLAB data is double. The function returns
a data type ID.

datatypeID = H5T.copy('H5T_NATIVE_DOUBLE');

b Specify the dimensions of the data set. In HDF5, use the
H5Screate_simple routine to create a data space. The example uses the

6-47



6 Scientific Data

corresponding MATLAB function, H5S.create_simple, to specify the
dimensions. The function returns a data space ID.

Because HDF5 stores data in row-major order and the MATLAB array
is organized in column-major order, you should reverse the ordering of
the dimension extents before using H5Screate_simple to preserve the
layout of the data. You can use fliplr for this purpose. For a list of
other HDF5 functions that require dimension flipping, see “Preserving
the Correct Layout of Your Data” on page 6-50.

dims = size(testdata);
dataspaceID = H5S.create_simple(2, fliplr(dims), []);

Other software programs that use row-major ordering (such as H5DUMP
from the HDF Group) may report the size of the dataset to be 3-by-2
instead of 2-by-3.

c Create the data set. In HDF5, you use the H5Dcreate routine to create
a data set. The example uses the corresponding MATLAB function,
H5D.create, specifying the file ID, the name you want to assign to
the data set, data type ID, the data space ID, and a data set creation
property list ID as arguments. The example uses the defaults for the
property lists. The function returns a data set ID.

dsetname = 'my_dataset';

datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P_DEFAULT');

6-48



Exporting to HDF5 Files

Note To write a large data set, you must use the chunking capability
of the HDF5 library. To do this, create a property list and use the
H5P.set_chunk function to set the chunk size in the property list. In the
following example, the dimensions of the data set are dims = [2^16
2^16] and the chunk size is 1024-by-1024. You then pass the property
list as the last argument to the data set creation function, H5D.create,
instead of using the H5P_DEFAULT value.

plistID = H5P.create('H5P_DATASET_CREATE'); % create property list

chunk_size = min([1024 1024], dims); % define chunk size

H5P.set_chunk(plistID, chunk_size); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

4 Write the data to the data set. In HDF5, use the H5Dwrite routine to write
data to a data set. The example uses the corresponding MATLAB function,
H5D.write, specifying as arguments the data set ID, the memory data type
ID, the memory space ID, the data space ID, the transfer property list ID
and the name of the MATLAB variable to be written to the data set.

You can use the memory data type to specify the data type used to represent
the data in the file. The example uses the constant 'H5ML_DEFAULT' which
lets the MATLAB function do an automatic mapping to HDF5 data types.
The memory data space ID and the data set’s data space ID specify to write
subsets of the data set to the file. The example uses the constant 'H5S_ALL'
to write all the data to the file and uses the default property list.

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL', ...

'H5P_DEFAULT', testdata);

If you had not reversed the ordering of the dimension extents in step 3b
above, you would have been required to permute the MATLAB array before
using H5D.write, which could result in an enormous performance penalty.

5 Close the data set, data space, data type, and file objects. If used inside a
MATLAB function, these identifiers are closed automatically when they
go out of scope.

6-49



6 Scientific Data

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

6 To read the data set you wrote to the file, you must open the file. In HDF5,
you use the H5Fopen routine to open an HDF5 file, specifying the name of
the file, the access mode, and a property list as arguments. The example
uses the corresponding MATLAB function, H5F.open, opening the file for
read-only access.

fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');

7 After opening the file, you must open the data set. In HDF5, you use the
H5Dopen function to open a data set. The example uses the corresponding
MATLAB function, H5D.open, specifying as arguments the file ID and the
name of the data set, defined earlier in the example.

datasetID = H5D.open(fileID, dsetname);

8 After opening the data set, you can read the data into the MATLAB
workspace. In HDF5, you use the H5Dread function to read an HDF5
file. The example uses the corresponding MATLAB function, H5D.read,
specifying as arguments the data set ID, the memory data type ID, the
memory space ID, the data space ID, and the transfer property list ID.

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
'H5S_ALL','H5S_ALL','H5P_DEFAULT');

You can compare the original MATLAB variable, testdata, with the
variable just created, data, to see if they are the same.

Preserving the Correct Layout of Your Data
When you use any of the following functions that deal with dataspaces, you
should flip dimension extents to preserve the correct layout of the data,
as illustrated in step 3b in “Writing Data to an HDF5 Data Set Using the
MATLAB Low-Level Functions” on page 6-47.

• H5D.set_extent

6-50



Exporting to HDF5 Files

• H5P.get_chunk

• H5P.set_chunk

• H5S.create_simple

• H5S.get_simple_extent_dims

• H5S.select_hyperslab

• H5T.array_create

• H5T.get_array_dims

6-51



6 Scientific Data

Import HDF4 Files Programatically

In this section...

“Overview” on page 6-52

“Using the MATLAB HDF4 High-Level Functions” on page 6-52

Overview
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National
Center for Supercomputing Applications (NCSA). For more information
about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National
Aeronautics and Space Administration (NASA) for storage of data returned
from the Earth Observing System (EOS). For more information about this
extension to HDF4, see the HDF-EOS documentation at the NASA Web site
(www.hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in
the following sections.

Note For information about importing HDF5 data, which is a separate,
incompatible format, see “Importing HDF5 Files” on page 6-32.

Using the MATLAB HDF4 High-Level Functions
To import data from an HDF or HDF-EOS file, you can use the MATLAB
HDF4 high-level function hdfread. The hdfread function provides a
programmatic way to import data from an HDF4 or HDF-EOS file that still
hides many of the details that you need to know if you use the low-level HDF
functions, described in “Import HDF4 Files Using Low-Level Functions” on
page 6-59.

This section describes these high-level MATLAB HDF functions, including

6-52

http://www.hdfgroup.org
http://www.hdfeos.org


Import HDF4 Files Programatically

• “Using hdfinfo to Get Information About an HDF4 File” on page 6-53

• “Using hdfread to Import Data from an HDF4 File” on page 6-53

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level
functions.

Using hdfinfo to Get Information About an HDF4 File
To get information about the contents of an HDF4 file, use the hdfinfo
function. The hdfinfo function returns a structure that contains information
about the file and the data in the file.

This example returns information about a sample HDF4 file included with
MATLAB:

info = hdfinfo('example.hdf')

info =

Filename: 'matlabroot\example.hdf'
Attributes: [1x2 struct]

Vgroup: [1x1 struct]
SDS: [1x1 struct]

Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

Using hdfread to Import Data from an HDF4 File
To use the hdfread function, you must specify the data set that you want to
read. You can specify the filename and the data set name as arguments, or
you can specify a structure returned by the hdfinfo function that contains
this information. The following example shows both methods. For information
about how to import a subset of the data in a data set, see “Reading a Subset
of the Data in a Data Set” on page 6-55.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo
function.

info = hdfinfo('example.hdf')

6-53



6 Scientific Data

info =

Filename: 'matlabroot\example.hdf'
Attributes: [1x2 struct]

Vgroup: [1x1 struct]
SDS: [1x1 struct]

Vdata: [1x1 struct]

To determine the names and other information about the data sets in the file,
look at the contents of the SDS field. The Name field in the SDS structure
gives the name of the data set.

dsets = info.SDS

dsets =

Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 0

2 Read the data set from the HDF4 file, using the hdfread function. Specify the
name of the data set as a parameter to the function. Note that the data set
name is case sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS')

dset =

3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12

6-54



Import HDF4 Files Programatically

9 10 11 12 13
10 11 12 13 14
11 12 13 14 15
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by
hdfinfo that contains this information. For example, to read a scientific
data set, use the SDS field.

dset = hdfread(info.SDS);

Reading a Subset of the Data in a Data Set. To read a subset of a data
set, you can use the optional 'index' parameter. The value of the index
parameter is a cell array of three vectors that specify the location in the data
set to start reading, the skip interval (e.g., read every other data item), and
the amount of data to read (e.g., the length along each dimension). In HDF4
terminology, these parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).

• Reads every element in the array ([]).

• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
'Index',{[3 3],[],[10 2 ]})

subset =

7 8
8 9
9 10

10 11

6-55



6 Scientific Data

11 12
12 13
13 14
14 15
15 16
16 17

6-56



Map HDF4 to MATLAB® Syntax

Map HDF4 to MATLAB Syntax
Each HDF4 API includes many individual routines that you use to read
data from files, write data to files, and perform other related functions. For
example, the HDF4 Scientific Data (SD) API includes separate C routines
to open (SDopen), close (SDend), and read data (SDreaddata). For the SD
API and the HDF-EOS GD and SW APIs, MATLAB provides functions
that map to individual C routines in the HDF4 library. These functions
are implemented in the matlab.io.hdf4.sd, matlab.io.hdfeos.gd, and
matlab.io.hdfeos.sw packages. For example, the SD API includes the C
routine SDendaccess to close an HDF4 data set:

status = SDendaccess(sds_id); /* C code */

To call this routine from MATLAB, use the MATLAB function,
matlab.io.hdf4.sd.endAccess. The syntax is similar:

sd.endAccess(sdsID)

For the remaining supported HDF4 APIs, MATLAB provides a single function
that serves as a gateway to all the routines in the particular HDF4 API. For
example, the HDF Annotations (AN) API includes the C routine ANend to
terminate access to an AN interface:

status = ANend(an_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with
the AN API, hdfan. You must specify the name of the routine, minus the API
acronym, as the first argument and pass any other required arguments to the
routine in the order they are expected. For example,

status = hdfan('end',an_id);

Some HDF4 API routines use output arguments to return data. Because
MATLAB does not support output arguments, you must specify these
arguments as return values.

For example, the ANget_tagref routine returns the tag and reference number
of an annotation in two output arguments, ann_tag and ann_ref. Here is the
C code:

status = ANget_tagref(an_id,index,annot_type,ann_tag,ann_ref);

6-57



6 Scientific Data

To call this routine from MATLAB, change the output arguments into return
values:

[tag,ref,status] = hdfan('get_tagref',AN_id,index,annot_type);

Specify the return values in the same order as they appear as output
arguments. The function status return value is always specified as the last
return value.

6-58



Import HDF4 Files Using Low-Level Functions

Import HDF4 Files Using Low-Level Functions
This example shows how to read data from a Scientific Data Set in an HDF4
file, using the functions in the matlat.io.hdf4.sd package. In HDF4
terminology, the numeric arrays stored in HDF4 files are called data sets.

Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Subsequent calls to functions in the matlat.io.hdf4.sd package need only
be prefixed with sd, rather than the entire package path.

Open HDF4 File

Open the example HDF4 file, sd.hdf, and specify read access, using the
matlab.io.hdf4.sd.start function. This function corresponds to the SD
API routine, SDstart.

sdID = sd.start('sd.hdf','read');

sd.start returns an HDF4 SD file identifier, sdID.

Get Information About HDF4 File

Get the number of data sets and global attributes in the file, using the
matlab.io.hdf4.sd.fileInfo function. This function corresponds to the
SD API routine, SDfileinfo.

[ndatasets,ngatts] = sd.fileInfo(sdID)

ndatasets =

4

ngatts =

1

6-59



6 Scientific Data

The file, sd.hdf, contains four data sets and one global attribute,

Get Attributes from HDF4 File

Get the contents of the first global attribute. HDF4 uses zero-based indexing,
so an index value of 0 specifies the first index.

HDF4 files can optionally include information, called attributes, that describes
the data that the file contains. Attributes associated with an entire HDF4
file are global attributes. Attributes associated with a data set are local
attributes.

attr = sd.readAttr(sdID,0)

attr =

02-Sep-2010 11:13:16

Select Data Sets to Import

Determine the index number of the data set named temperature. Then, get
the identifier of that data set.

idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);

sd.select returns an HDF4 SD data set identifier, sdsID.

Get Information About Data Set

Get information about the data set identified by sdsID using the
matlab.io.hdf4.sd.getInfo function. This function corresponds to the SD
API routine, SDgetinfo.

[name,dims,datatype,nattrs] = sd.getInfo(sdsID)

name =

temperature

dims =

6-60



Import HDF4 Files Using Low-Level Functions

20 10

datatype =

double

nattrs =

11

sd.getInfo returns information about the name, size, data type, and number
of attributes of the data set.

Read Entire Data Set

Read the entire contents of the data set specified by the data set identifier,
sdsID.

data = sd.readData(sdsID);

Read Portion of Data Set

Read a 2-by-4 portion of the data set, starting from the first column in
the second row. Use the matlab.io.hdf4.sd.readData function, which
corresponds to the SD API routine, SDreaddata. The start input is a vector
of index values specifying the location in the data set where you want to start
reading data. The count input is a vector specifying the number of elements
to read along each data set dimension.

start = [0 1];
count = [2 4];
data2 = sd.readData(sdsID,start,count)

data2 =

21 41 61 81
22 42 62 82

6-61



6 Scientific Data

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess
function. This function corresponds to the SD API routine, SDendaccess. You
must close access to all the data sets in and HDF4 file before closing the file.

sd.endAccess(sdsID)

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This
function corresponds to the SD API routine, SDend.

sd.close(sdID)

See Also sd.getInfo | sd.readData | sd.endAccess | sd.close | sd.start |
sd.fileInfo

Concepts • “Map HDF4 to MATLAB Syntax” on page 6-57

6-62



Import HDF4 Files Interactively

Import HDF4 Files Interactively

Note The HDF Import Tool will be removed in a future release.

The HDF Import Tool is a graphical user interface that you can use to
navigate through HDF4 or HDF-EOS files and import data from them.
Importing data using the HDF Import Tool involves these steps:

In this section...

“Step 1: Opening an HDF4 File in the HDF Import Tool” on page 6-63

“Step 2: Selecting a Data Set in an HDF File” on page 6-65

“Step 3: Specifying a Subset of the Data (Optional)” on page 6-66

“Step 4: Importing Data and Metadata” on page 6-67

“Step 5: Closing HDF Files and the HDF Import Tool” on page 6-68

“Using the HDF Import Tool Subsetting Options” on page 6-68

The following sections provide more detail about each of these steps.

Step 1: Opening an HDF4 File in the HDF Import Tool
Open an HDF4 or HDF-EOS file in MATLAB using one of the following
methods:

• On theHome tab, in the Variable section, click Import Data. If you select
an HDF4 or HDF-EOS file, the MATLAB Import Wizard automatically
starts the HDF Import Tool.

• Start the HDF Import Tool by entering the hdftool command at the
MATLAB command line:

hdftool

This opens an empty HDF Import Tool. To open a file, click the Open
option on the HDFTool File menu and select the file you want to open. You
can open multiple files in the HDF Import Tool.

6-63



6 Scientific Data

• Open an HDF or HDF-EOS file by specifying the file name with the
hdftool command on the MATLAB command line:

hdftool('example.hdf')

Viewing a File in the HDF Import Tool
When you open an HDF4 or HDF-EOS file in the HDF Import Tool, the tool
displays the contents of the file in the Contents pane. You can use this pane
to navigate within the file to see what data sets it contains. You can view the
contents of HDF-EOS files as HDF data sets or as HDF-EOS files. The icon in
the contents pane indicates the view, as illustrated in the following figure.
Note that these are just two views of the same data.

6-64



Import HDF4 Files Interactively

��
�����
���
������
�������

���
����


����
���� ��
 !
������� ��
�

"� ����������
�#$�
�����
 ��


Step 2: Selecting a Data Set in an HDF File
To import a data set, you must first select the data set in the contents pane of
the HDF Import Tool. Use the Contents pane to view the contents of the file
and navigate to the data set you want to import.

For example, the following figure shows the data set Example SDS in the
HDF file selected. Once you select a data set, the Metadata panel displays
information about the data set and the importing and subsetting pane
displays subsetting options available for this type of HDF object.

6-65



6 Scientific Data

�
�
%�
�
������
�

������
�
�
������

�#$�
�����
� �����������&��
�����$'
%�

Step 3: Specifying a Subset of the Data (Optional)
When you select a data set in the contents pane, the importing and subsetting
pane displays the subsetting options available for that type of HDF object.
The subsetting options displayed vary depending on the type of HDF object.
For more information, see “Using the HDF Import Tool Subsetting Options”
on page 6-68.

6-66



Import HDF4 Files Interactively

Step 4: Importing Data and Metadata
To import the data set you have selected, click the Import button, bottom
right corner of the Importing and Subsetting pane. Using the Importing and
Subsetting pane, you can

• Specify the name of the workspace variable — By default, the HDF
Import Tool uses the name of the HDF4 data set as the name of the
MATLAB workspace variable. In the following figure, the variable name
is Example_SDS. To specify another name, enter text in the Workspace
Variable text box.

• Specify whether to import metadata associated with the data set — To
import any metadata that might be associated with the data set, select the
Import Metadata check box. To store the metadata, the HDF Import
Tool creates a second variable in the workspace with the same name with
“_info” appended to it. For example, if you select this check box, the
name of the metadata variable for the data set in the figure would be
Example_SDS_info.

• Save the data set import command syntax — The Dataset import
command text window displays the MATLAB command used to import
the data set. This text is not editable, but you can copy and paste it into the
MATLAB Command Window or a text editor for reuse.

The following figure shows how to specify these options in the HDF Import
Tool.

"� �����
������
���&�������
�

� 
%��(����
���
)����$�
��������

������
�

!*+,*-�%������
#�
������� ��������

���%.�&
�
������ ���
������
�

6-67



6 Scientific Data

Step 5: Closing HDF Files and the HDF Import Tool
To close a file, select the file in the contents pane and click Close File on the
HDF Import Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on
the HDF Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or
click the Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,

h = hdftool('example.hdf')

you can use the close(h) command to close the tool from the MATLAB
command line.

Using the HDF Import Tool Subsetting Options

Note The HDF Import Tool will be removed in a future release.

When you select a data set, the importing and subsetting pane displays the
subsetting options available for that type of data set. The following sections
provide information about these subsetting options for all supported data
set types. For general information about the HDF Import tool, see “Import
HDF4 Files Interactively” on page 6-63.

• “HDF Scientific Data Sets (SD)” on page 6-69

• “HDF Vdata” on page 6-70

• “HDF-EOS Grid Data” on page 6-71

• “HDF-EOS Point Data” on page 6-76

• “HDF-EOS Swath Data” on page 6-76

• “HDF Raster Image Data” on page 6-80

6-68



Import HDF4 Files Interactively

Note To use these data subsetting options effectively, you must understand
the HDF and HDF-EOS data formats. Therefore, use this documentation
in conjunction with the HDF documentation (www.hdfgroup.org) and the
HDF-EOS documentation (www.hdfeos.org).

HDF Scientific Data Sets (SD)
The HDF scientific data set (SD) is a group of data structures used to store
and describe multidimensional arrays of scientific data. Using the HDF
Import Tool subsetting parameters, you can import a subset of an HDF
scientific data set by specifying the location, range, and number of values to
be read along each dimension.

�#$�
�����
 ����
�
��

���
�����

The subsetting parameters are:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

6-69

http://www.hdfgroup.org
http://www.hdfeos.org


6 Scientific Data

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

HDF Vdata
HDF Vdata data sets provide a framework for storing customized tables.
A Vdata table consists of a collection of records whose values are stored in
fixed-length fields. All records have the same structure and all values in
each field have the same data type. Each field is identified by a name. The
following figure illustrates a Vdata table.

��/ �
� �

�

+
� 

0

� �� 0

	 	 1

2

��
�����
�

3
%����

��
���

You can import a subset of an HDF Vdata data set in the following ways:

• Specifying the name of the field that you want to import

• Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for
Vdata.

6-70



Import HDF4 Files Interactively

� 
%��(���
�������#$�
�

� 
%��(��&
�
���
$
�����
�����

� 
%��(�&������(
�
%���������
��

HDF-EOS Grid Data
In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a
known map projection. The HDF Import Tool supports the following mutually
exclusive subsetting options for Grid data:

• “Direct Index” on page 6-72

• “Geographic Box” on page 6-73

• “Interpolation” on page 6-73

• “Pixels” on page 6-74

• “Tile” on page 6-74

• “Time” on page 6-75

• “User-Defined” on page 6-75

To access these options, click the Subsetting method menu in the importing
and subsetting pane.

6-71



6 Scientific Data

���%.�&
�
���
�

�� �����

Direct Index. You can import a subset of an HDF-EOS Grid data set by
specifying the location, range, and number of values to be read along each
dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

6-72



Import HDF4 Files Interactively

Geographic Box. You can import a subset of an HDF-EOS Grid data set
by specifying the rectangular area of the grid that you are interested in. To
define this rectangular area, you must specify two points, using longitude and
latitude in decimal degrees. These points are two corners of the rectangular
area. Typically, Corner 1 is the upper-left corner of the box, and Corner 2
is the lower-right corner of the box.

Optionally, you can further define the subset of data you are interested in
by using Time parameters (see “Time” on page 6-75) or by specifying other
User-Defined subsetting parameters (see “User-Defined” on page 6-75).

Interpolation. Interpolation is the process of estimating a pixel value at a
location in between other pixels. In interpolation, the value of a particular
pixel is determined by computing the weighted average of some set of pixels
in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points
that are corners of the interpolation area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

6-73



6 Scientific Data

Pixels. You can import a subset of the pixels in a Grid data set by defining
a rectangular area over the grid. You define the region used for bilinear
interpolation by specifying two points that are corners of the interpolation
area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

Tile. In HDF-EOS Grid data, a rectilinear grid overlays a map. Each
rectangle defined by the horizontal and vertical lines of the grid is referred to
as a tile. If the HDF-EOS Grid data is stored as tiles, you can import a subset
of the data by specifying the coordinates of the tile you are interested in.
Tile coordinates are 1-based, with the upper-left corner of a two-dimensional
data set identified as 1,1. In a three-dimensional data set, this tile would be
referenced as 1,1,1.

6-74



Import HDF4 Files Interactively

Time. You can import a subset of the Grid data set by specifying a time
period. You must specify both the start time and the stop time (the endpoint
of the time span). The units (hours, minutes, seconds) used to specify the time
are defined by the data set.

Along with these time parameters, you can optionally further define the
subset of data to import by supplying user-defined parameters.

User-Defined. You can import a subset of the Grid data set by specifying
user-defined subsetting parameters.

6-75



6 Scientific Data

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

HDF-EOS Point Data
HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS
Point data set by specifying field names and level. Optionally, you can refine
the subsetting by specifying the range of records you want to import, by
defining a rectangular area, or by specifying a time period. For information
about specifying a rectangular area, see “Geographic Box” on page 6-73. For
information about subsetting by time, see “Time” on page 6-75.

HDF-EOS Swath Data
HDF-EOS Swath data is data that is produced by a satellite as it traces a path
over the earth. This path is called its ground track. The sensor aboard the
satellite takes a series of scans perpendicular to the ground track. Swath data
can also include a vertical measure as a third dimension. For example, this
vertical dimension can represent the height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting
options for Swath data:

6-76



Import HDF4 Files Interactively

• “Direct Index” on page 6-77

• “Geographic Box” on page 6-78

• “Time” on page 6-79

• “User-Defined” on page 6-80

To access these options, click the Subsetting method menu in the
Importing and Subsetting pane.

���%.�&
�
���
�
�
%�����#$�
�����
� ����

Direct Index. You can import a subset of an HDF-EOS Swath data set by
specifying the location, range, and number of values to be read along each
dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each

6-77



6 Scientific Data

dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

Geographic Box. You can import a subset of an HDF-EOS Swath data
set by specifying the rectangular area of the grid that you are interested in
and by specifying the selection Mode.

You define the rectangular area by specifying two points that specify two
corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track
Inclusion and the Geolocation mode. The Cross Track Inclusion value
determines how much of the area of the geographic box that you define must
fall within the boundaries of the swath.

6-78



Import HDF4 Files Interactively

Select from these values:

• AnyPoint — Any part of the box overlaps with the swath.

• Midpoint— At least half of the box overlaps with the swath.

• Endpoint— All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data
must be in the same swath.

Select from these values:

• Internal— Geolocation fields and data fields must be in the same swath.

• External— Geolocation fields and data fields can be in different swaths.

Time. You can optionally also subset swath data by specifying a time period.
The units used (hours, minutes, seconds) to specify the time are defined by
the data set

6-79



6 Scientific Data

User-Defined. You can optionally also subset a swath data set by specifying
user-defined parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

HDF Raster Image Data
For 8-bit HDF raster image data, you can specify the colormap.

6-80



About HDF4 and HDF-EOS

About HDF4 and HDF-EOS
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National
Center for Supercomputing Applications (NCSA). For more information
about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National
Aeronautics and Space Administration (NASA) for storage of data returned
from the Earth Observing System (EOS). For more information about this
extension to HDF4, see the HDF-EOS documentation at the NASA Web site
(www.hdfeos.org).

HDF4 Application Programming Interfaces (APIs) are libraries of C routines.
To import or export data, you must use the functions in the HDF4 API
associated with the particular HDF4 data type you are working with. Each
API has a particular programming model, that is, a prescribed way to use
the routines to write data sets to the file. MATLAB functions allow you to
access specific HDF4 APIs.

To use the MATLAB HDF4 functions effectively, you must be familiar with
the HDF library. For detailed information about HDF4 features and routines,
refer to the documentation at the HDF Web site.

6-81

http://www.hdfgroup.org
http://www.hdfeos.org


6 Scientific Data

Export to HDF4 Files

In this section...

“Write MATLAB Data to HDF4 File” on page 6-82

“Manage HDF4 Identifiers” on page 6-84

Write MATLAB Data to HDF4 File
This example shows how to write MATLAB arrays to a Scientific Data Set
in an HDF4 file.

Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Prefix subsequent calls to functions in the matlat.io.hdf4.sd package with
sd, rather than the entire package path.

Create HDF4 File

Create a new HDF4 file using the matlab.io.hdf4.sd.start function. This
function corresponds to the SD API routine, SDstart.

sdID = sd.start('mydata.hdf','create');

sd.start creates the file and returns a file identifier named sdID.

To open an existing file instead of creating a new one, call sd.start with
'write' access instead of 'create'.

Create HDF4 Data Set

Create a data set in the file for each MATLAB array you want to export. If
you are writing to an existing data set, you can skip ahead to the next step. In
this example, create one data set for the array of sample data, A, using the
matlab.io.hdf4.sd.create function. This function corresponds to the SD
API routine, SDcreate. The ds_type argument is a string specifying the
MATLAB data type of the data set.

6-82



Export to HDF4 Files

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];
ds_name = 'A';
ds_type = 'double';
ds_dims = size(A);
sdsID = sd.create(sdID,ds_name,ds_type,ds_dims);

sd.create returns an HDF4 SD data set identifier, sdsID.

Write MATLAB Data to HDF4 File

Write data in A to the data set in the file using the
matlab.io.hdf4.sd.writedata function. This function corresponds to the
SD API routine, SDwritedata. The start argument specifies the zero-based
starting index.

start = [0 0];
sd.writeData(sdsID,start,A);

sd.writeData queues the write operation. Queued operations execute when
you close the HDF4 file.

Write MATLAB Data to Portion of Data Set

Replace the second row of the data set with the vector B. Use a start input
value of [1 0] to begin writing at the second row, first column. start uses
zero-based indexing.

B = [9 9 9 9 9];
start = [1 0];
sd.writeData(sdsID,start,B);

Write Metadata to HDF4 File

Create a global attribute named creation_date, with a value that is the
current date and time. Use the matlab.io.hdf4.sd.setAttr function, which
corresponds to the SD API routine, SDsetattr.

sd.setAttr(sdID,'creation_date',datestr(now));

sd.Attr creates a file attribute, also called a global attribute, associated
with the HDF4 file identified by sdID.

6-83



6 Scientific Data

Associate a predefined attribute, cordsys, to the data set identified by
sdsID. Possible values of this attribute include the text strings 'cartesian',
'polar', and 'spherical'.

attr_name = 'cordsys';
attr_value = 'polar';
sd.setAttr(sdsID,attr_name,attr_value);

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess
function. This function corresponds to the SD API routine, SDendaccess. You
must close access to all the data sets in and HDF4 file before closing the file.

sd.endAccess(sdsID);

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This
function corresponds to the SD API routine, SDend.

sd.close(sdID);

Closing an HDF4 file executes all the write operations that have been queued
using SDwritedata.

Manage HDF4 Identifiers
MATLAB supports utility functions that make it easier to use HDF4 in the
MATLAB environment.

• “View All Open HDF4 Identifiers” on page 6-84

• “Close All Open HDF4 Identifiers” on page 6-85

View All Open HDF4 Identifiers
Use the gateway function to the MATLAB HDF4 utility API, hdfml, and
specify the name of the listinfo routine as an argument to view all the
currently open HDF4 identifiers. MATLAB updates this list whenever HDF
identifiers are created or closed. In this example only two identifiers are open.

6-84



Export to HDF4 Files

hdfml('listinfo')

No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
262144

Open scientific data file identifiers:
393216

No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Close All Open HDF4 Identifiers
Close all the currently open HDF4 identifiers in a single call using the
gateway function to the MATLAB HDF4 utility API, hdfml. Specify the name
of the closeall routine as an argument:

hdfml('closeall')

See Also sd.start | sd.create | sd.writeData | sd.setAttr | sd.close |
sd.endAccess | hdfml

Concepts • “Map HDF4 to MATLAB Syntax” on page 6-57

6-85



6 Scientific Data

6-86



7

Audio and Video

• “Read and Get Information About Audio Files” on page 7-2

• “Record and Play Audio” on page 7-3

• “Get Information about Video Files” on page 7-9

• “Read Video Files” on page 7-10

• “Supported Video File Formats” on page 7-13

• “Convert Between Image Sequences and Video” on page 7-16

• “Export to Audio and Video” on page 7-20

• “Characteristics of Audio Files” on page 7-22



7 Audio and Video

Read and Get Information About Audio Files
Use the audioread function to read audio data from a file. audioread can
support WAVE, OGG, FLAC, AU, MP3, and MPEG-4 AAC files.

You also can read WAV, AU, or SND files interactively. Select Import
Data or double-click the file name in the Current Folder browser.

To get information about audio files, use audioinfo. The audioinfo function
returns information such as the number of audio channels, sample rate,
duration, bits per sample, bit rate, and metadata, as applicable.

7-2



Record and Play Audio

Record and Play Audio

In this section...

“Record Audio” on page 7-3

“Play Audio” on page 7-6

“Record or Play Audio within a Function” on page 7-7

Record Audio
To record data from an audio input device (such as a microphone connected to
your system) for processing in MATLAB:

1 Create an audiorecorder object.

2 Call the record or recordblocking method, where:

• record returns immediate control to the calling function or the command
prompt even as recording proceeds. Specify the length of the recording in
seconds, or end the recording with the stop method. Optionally, call the
pause and resume methods. The recording is performed asynchronously.

• recordblocking retains control until the recording is complete. Specify
the length of the recording in seconds. The recording is performed
synchronously.

3 Create a numeric array corresponding to the signal data using the
getaudiodata method.

The following examples show how to use the recordblocking and record
methods.

Record Microphone Input
This example shows how to record microphone input, play back the recording,
and store the recorded audio signal in a numeric array. You must first connect
a microphone to your system.

Create an audiorecorder object named recObj for recording audio input.

recObj = audiorecorder

7-3



7 Audio and Video

recObj =

audiorecorder with properties:

SampleRate: 8000
BitsPerSample: 8

NumberOfChannels: 1
DeviceID: -1

CurrentSample: 1
TotalSamples: 0

Running: 'off'
StartFcn: []
StopFcn: []

TimerFcn: []
TimerPeriod: 0.0500

Tag: ''
UserData: []

Type: 'audiorecorder'

audiorecorder creates an 8000 Hz, 8-bit, 1-channel audiorecorder object.

Record your voice for 5 seconds.

disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

Play back the recording.

play(recObj);

Store data in double-precision array, y.

y = getaudiodata(recObj);

Plot the audio samples.

plot(y);

7-4



Record and Play Audio

Record Two Channels from Different Sound Cards
To record audio independently from two different sound cards, with a
microphone connected to each:

1 Call audiodevinfo to list the available sounds cards. For example, this
code returns a structure array containing all input and output audio
devices on your system:

info = audiodevinfo;

Identify the sound cards you want to use by name, and note their ID values.

2 Create two audiorecorder objects. For example, this code creates the
audiorecorder object, recorder1, for recording a single channel from
device 3 at 44.1 kHz and 16 bits per sample. The audiorecorder object,
recorder2, is for recording a single channel from device 4 at 48 kHz:

recorder1 = audiorecorder(44100,16,1,3);
recorder2 = audiorecorder(48000,16,1,4);

3 Record each audio channel separately.

record(recorder1);
record(recorder2);
pause(5);

The recordings occur simultaneously as the first call to record does not
block.

4 Stop the recordings.

stop(recorder1);
stop(recorder2);

Specify the Quality of the Recording
By default, an audiorecorder object uses a sample rate of 8000 hertz, a
depth of 8 bits (8 bits per sample), and a single audio channel. These settings
minimize the required amount of data storage. For higher quality recordings,
increase the sample rate or bit depth.

7-5



7 Audio and Video

For example, typical compact disks use a sample rate of 44,100 hertz and
a 16-bit depth. Create an audiorecorder object to record in stereo (two
channels) with those settings:

myRecObj = audiorecorder(44100, 16, 2);

For more information on the available properties and values, see the
audiorecorder reference page.

Play Audio
After you import or record audio, MATLAB supports several ways to listen
to the data:

• For simple playback using a single function call, use sound or soundsc. For
example, load a sample MAT-file that contains signal and sample rate
data, and listen to the audio:

load chirp.mat;
sound(y, Fs);

• For more flexibility during playback, including the ability to pause, resume,
or define callbacks, use the audioplayer function. Create an audioplayer
object, then call methods to play the audio. For example, listen to the gong
sample file:

load gong.mat;
gong = audioplayer(y, Fs);
play(gong);

For an additional example, see “Record or Play Audio within a Function”
on page 7-7.

If you do not specify the sample rate, sound plays back at 8192 hertz. For any
playback, specify smaller sample rates to play back more slowly, and larger
sample rates to play back more quickly.

7-6



Record and Play Audio

Note Most sound cards support sample rates between approximately 5,000
and 48,000 hertz. Specifying sample rates outside this range can produce
unexpected results.

Record or Play Audio within a Function
If you create an audioplayer or audiorecorder object inside a function,
the object exists only for the duration of the function. For example, create a
player function called playFile and a simple callback function showSeconds:

function playFile(myfile)
load(myfile);

obj = audioplayer(y, Fs);
obj.TimerFcn = 'showSeconds';
obj.TimerPeriod = 1;

play(obj);
end

function showSeconds
disp('tick')

end

Call playFile from the command prompt to play the file handel.mat:

playFile('handel.mat')

At the recorded sample rate of 8192 samples per second, playing the 73113
samples in the file takes approximately 8.9 seconds. However, the playFile
function typically ends before playback completes, and clears the audioplayer
object obj.

To ensure complete playback or recording, consider the following options:

• Use playblocking or recordblocking instead of play or record. The
blocking methods retain control until playing or recording completes. If you
block control, you cannot issue any other commands or methods (such as
pause or resume) during the playback or recording.

7-7



7 Audio and Video

• Create an output argument for your function that generates an object in
the base workspace. For example, modify the playFile function to include
an output argument:

function obj = playFile(myfile)

Call the function:

h = playFile('handel.mat');

Because h exists in the base workspace, you can pause playback from the
command prompt:

pause(h)

7-8



Get Information about Video Files

Get Information about Video Files
VideoReader creates an object that contains properties of the video file,
including the duration, frame rate, format, height, and width. To view these
properties, or store them in a structure, use the get method. For example, get
the properties of the file xylophone.mp4:

xyloObj = VideoReader('xylophone.mp4');
info = get(xyloObj)

The get function returns:

info =

Duration: 4.7000
Name: 'xylophone.mp4'
Path: [1x88 char]
Tag: ''

Type: 'VideoReader'
UserData: []

BitsPerPixel: 24
FrameRate: 30

Height: 240
NumberOfFrames: 141

VideoFormat: 'RGB24'
Width: 320

To access a specific property of the object, such as Duration, use dot notation
as follows:

duration = xyloObj.Duration;

Note For files with a variable frame rate, VideoReader cannot return
the number of frames until you read the last frame of the file. For more
information, see “Read Variable Frame Rate Video” on page 7-11.

See Also get

7-9



7 Audio and Video

Read Video Files

In this section...

“Import Video Data from a File” on page 7-10

“Display Video Frame with Colormap” on page 7-10

“Process Frames of a Video File” on page 7-10

“Read Variable Frame Rate Video” on page 7-11

Import Video Data from a File
To import video data from a file, construct a reader object with VideoReader
and read selected frames with the read function.

For example, import all frames in the file xylophone.mp4:

xyloObj = VideoReader('xylophone.mp4');
vidFrames = read(xyloObj);

It is not necessary to close the multimedia object.

Display Video Frame with Colormap
Use the read function to specify a video frame to read. For example, read the
second frame in a hypothetical file, indexedImg.avi.

obj = VideoReader('indexedImg.avi');
vidFrame = read(obj,2);

Use the image function to display the video frame. For indexed video, you
can apply a colormap. In this case, gray(256) applies a linear grayscale
colormap of length 256.

image(vidFrame)
colormap(gray(256))

Process Frames of a Video File
This example shows how to save memory by processing a video one frame at
a time. For faster processing, preallocate memory to store the video data.

7-10



Read Video Files

Convert the file xylophone.mp4 to a MATLAB movie, and play it with the
movie function

Create a VideoReader object for xylophone.mp4. Determine the number of
frames, and the height and width of the frames.

xyloObj = VideoReader('xylophone.mp4');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

Preallocate the movie structure.

mov(1:nFrames) = ...
struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),...

'colormap',[]);

Read one frame at a time.

for k = 1 : nFrames
mov(k).cdata = read(xyloObj,k);

end

Play back the movie once at the video’s frame rate.

movie(mov,1,xyloObj.FrameRate);

Read Variable Frame Rate Video
Some files store video at a variable frame rate, including many Windows
Media Video files. For these files, VideoReader cannot determine the number
of frames until you read the last frame.

For example, consider a hypothetical file VarFrameRate.wmv that has a
variable frame rate. A call to VideoReader to create the multimedia object
such as

obj = VideoReader('VarFrameRate.wmv')

returns the following warning and summary information:

7-11



7 Audio and Video

Warning: Unable to determine the number of frames in this file.

Summary of Multimedia Reader Object for 'VarFrameRate.wmv'.

Video Parameters: 23.98 frames per second, RGB24 1280x720.
Unable to determine video frames available.

Counting Frames
To determine the number of frames in a variable frame rate file, call read
with the following syntax:

lastFrame = read(obj, inf);

This command reads the last frame and sets the NumberOfFrames property of
the multimedia object. Because VideoReader must decode all video data to
count the frames reliably, the call to read sometimes takes a long time to run.

Specifying the Frames to Read
For any video file, you can specify the frames to read with a range of indices.
Usually, if you request a frame beyond the end of the file, read returns an
error.

However, if the file uses a variable frame rate, and the requested range
straddles the end of the file, read returns a partial result. For example, given
a file with 2825 frames associated with the multimedia object obj, a call to
read frames 2800 - 3000 as follows:

images = read(obj, [2800 3000]);

returns:

Warning: The end of file was reached before the
requested frames were read completely.
Frames 2800 through 2825 were returned.

See Also VideoReader | mmfileinfo | movie

Concepts • “Supported Video File Formats” on page 7-13

7-12



Supported Video File Formats

Supported Video File Formats

In this section...

“What Are Video Files?” on page 7-13

“Formats That VideoReader Supports” on page 7-13

“View Codec Associated with Video File” on page 7-14

“Troubleshooting: Errors Reading Video File” on page 7-15

What Are Video Files?
For video data, the term “file format” often refers to either the container
format or the codec. A container format describes the layout of the file, while a
codec describes how to encode/decode the video data. Many container formats
can hold data encoded with different codecs.

To read a video file, any application must:

• Recognize the container format (such as AVI).

• Have access to the codec that can decode the video data stored in the
file. Some codecs are part of standard Windows and Macintosh system
installations, and allow you to play video in Windows Media Player or
QuickTime. In MATLAB, VideoReader can access most, but not all, of
these codecs.

• Properly use the codec to decode the video data in the file. VideoReader
cannot always read files associated with codecs that were not part of your
original system installation.

Formats That VideoReader Supports
Use VideoReader to read video files in MATLAB. The file formats that
VideoReader supports vary by platform, and have no restrictions on file
extensions.

7-13



7 Audio and Video

All Platforms AVI, including uncompressed, indexed, grayscale, and
Motion JPEG-encoded video (.avi)
Motion JPEG 2000 (.mj2)

All Windows MPEG-1 (.mpg)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft DirectShow

Windows 7 or
later

MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by Microsoft Media Foundation

Macintosh Most formats supported by QuickTime Player, including:
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
3GPP
3GPP2
AVCHD
DV

Linux Any format supported by your installed plug-ins
for GStreamer 0.10 or above, as listed on
http://gstreamer.freedesktop.org/documentation/plugins.html,
including Ogg Theora (.ogg).

View Codec Associated with Video File
This example shows how to view the codec associated with a video file, using
the mmfileinfo function.

Store information about the sample video file, shuttle.avi, in a structure
array named info.

info = mmfileinfo('shuttle.avi');

View the Format field of the structure.

info.Video.Format

ans =

7-14

http://gstreamer.freedesktop.org/documentation/plugins.html


Supported Video File Formats

MJPG

The file, shuttle.avi, uses the Motion JPEG codec.

Troubleshooting: Errors Reading Video File
You might be unable to read a video file if MATLAB cannot access the
appropriate codec. 64-bit applications use 64-bit codec libraries, while 32-bit
applications use 32-bit codec libraries. For example, when working with
64-bit MATLAB, you cannot read video files that require access to a 32-bit
codec installed on your system. You might need to install a 32-bit version of
the codec, or create a video file with a codec whose 64-bit version is available
and installed on your computer.

Sometimes, VideoReader cannot open a video file for reading on Windows
platforms. This might occur if you have installed a third-party codec that
overrides your system settings. Uninstall the codec and try opening the video
file in MATLAB again.

7-15



7 Audio and Video

Convert Between Image Sequences and Video
This example shows how to convert between video files and sequences of
image files using VideoReader and VideoWriter.

The sample file named shuttle.avi contains 121 frames. Convert the frames
to image files using VideoReader and the imwrite function. Then, convert
the image files to an AVI file using VideoWriter.

Setup

Create a temporary working folder to store the image sequence.

workingDir = tempname;
mkdir(workingDir);
mkdir(workingDir,'images');

Construct a VideoReader Object

Create a VideoReader object to use for reading frames from the file.

shuttleVideo = VideoReader('shuttle.avi');

Create the Image Sequence

Loop through the video, reading each frame into a width-by-height-by-3 array
named img. Write out each image to a JPEG file with a name in the form
imgN.jpg, where N is the frame number:

img1.jpg
img2.jpg
...
img121.jpg

for ii = 1:shuttleVideo.NumberOfFrames
img = read(shuttleVideo,ii);

% Write out to a JPEG file (img1.jpg, img2.jpg, etc.)
imwrite(img,fullfile(workingDir,'images',sprintf('img%d.jpg',ii)));

end

7-16



Convert Between Image Sequences and Video

Read and Sort the Image Sequence into MATLAB®

Find all the JPEG file names in the images folder. Convert the set of image
names to a cell array.

imageNames = dir(fullfile(workingDir,'images','*.jpg'));
imageNames = {imageNames.name}';

Notice that the image file names are not in numeric order.

disp(imageNames(1:10));

'img1.jpg'
'img10.jpg'
'img100.jpg'
'img101.jpg'
'img102.jpg'
'img103.jpg'
'img104.jpg'
'img105.jpg'
'img106.jpg'
'img107.jpg'

To sort the file names, extract the frame numbers from the file names and
use them to sort the array.

First, match any file names that contain a sequence of numeric digits.
Convert the strings to doubles.

imageStrings = regexp([imageNames{:}],'(\d*)','match');
imageNumbers = str2double(imageStrings);

Sort the frame numbers from lowest to highest. The sort function returns an
index matrix that indicates how to order the associated files.

[~,sortedIndices] = sort(imageNumbers);
sortedImageNames = imageNames(sortedIndices);

The sequence file names are now sorted.

7-17



7 Audio and Video

disp(sortedImageNames(1:10));

'img1.jpg'
'img2.jpg'
'img3.jpg'
'img4.jpg'
'img5.jpg'
'img6.jpg'
'img7.jpg'
'img8.jpg'
'img9.jpg'
'img10.jpg'

Create a New Video with the Image Sequence

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by
default.

outputVideo = VideoWriter(fullfile(workingDir,'shuttle_out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo);

Loop through the image sequence, load each image, and then write it to the
video.

for ii = 1:length(sortedImageNames)
img = imread(fullfile(workingDir,'images',sortedImageNames{ii}));

writeVideo(outputVideo,img);
end

Finalize the video file.

close(outputVideo);

View the Final Video

Construct a reader object.

shuttleAvi = VideoReader(fullfile(workingDir,'shuttle_out.avi'));

7-18



Convert Between Image Sequences and Video

Create a MATLAB movie struct from the video frames.

mov(shuttleAvi.NumberOfFrames) = struct('cdata',[],'colormap',[]);
for ii = 1:shuttleAvi.NumberOfFrames

mov(ii) = im2frame(read(shuttleAvi,ii));
end

Resize the current figure and axes based on the video’s width and height,
and view the first frame of the movie.

set(gcf,'position', [150 150 shuttleAvi.Width shuttleAvi.Height])
set(gca,'units','pixels');
set(gca,'position',[0 0 shuttleAvi.Width shuttleAvi.Height])

image(mov(1).cdata,'Parent',gca);
axis off;

Play back the movie once at the video’s frame rate.

movie(mov,1,shuttleAvi.FrameRate);

Credits

Video of the Space Shuttle courtesy of NASA.

7-19



7 Audio and Video

Export to Audio and Video

In this section...

“Export to Audio Files” on page 7-20

“Export Video to AVI Files” on page 7-20

Export to Audio Files
In MATLAB, audio data is simply numeric data that you can export using
standard MATLAB data export functions, such as save.

You also can export audio data to files in specific file formats using the
audiowrite function.

Export Video to AVI Files
To create an Audio/Video Interleaved (AVI) file from MATLAB graphics
animations or from still images, follow these steps:

1 Create a VideoWriter object by calling the VideoWriter function. For
example:

myVideo = VideoWriter('myfile.avi');

By default, VideoWriter prepares to create an AVI file using Motion JPEG
compression. To create an uncompressed file, specify the Uncompressed
AVI profile, as follows:

uncompressedVideo = VideoWriter('myfile.avi', 'Uncompressed AVI');

2 Optionally, adjust the frame rate (number of frames to display per second)
or the quality setting (a percentage from 0 through 100). For example:

myVideo.FrameRate = 15; % Default 30
myVideo.Quality = 50; % Default 75

7-20



Export to Audio and Video

Note Quality settings only apply to compressed files. Higher quality
settings result in higher video quality, but also increase the file size. Lower
quality settings decrease the file size and video quality.

3 Open the file:

open(myVideo);

Note After you call open, you cannot change the frame rate or quality
settings.

4 Write frames, still images, or an existing MATLAB movie to the file
by calling writeVideo. For example, suppose that you have created a
MATLAB movie called myMovie. Write your movie to a file:

writeVideo(myVideo, myMovie);

Alternatively, writeVideo accepts single frames or arrays of still images
as the second input argument. For more information, see the writeVideo
reference page.

5 Close the file:

close(myVideo);

7-21



7 Audio and Video

Characteristics of Audio Files
The audio signal in a file represents a series of samples that capture the
amplitude of the sound over time. The sample rate is the number of discrete
samples taken per second and given in hertz. The precision of the samples,
measured by the bit depth (number of bits per sample), depends on the
available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in
an m-by-1 column vector, and stereo data in an m-by-2 matrix. In either case, m
is the number of samples. For stereo data, the first column contains the left
channel, and the second column contains the right channel.

Typically, each sample is a double-precision value between -1 and 1. In some
cases, particularly when the audio hardware does not support high bit depths,
audio files store the values as 8-bit or 16-bit integers. The range of the sample
values depends on the available number of bits. For example, samples stored
as uint8 values can range from 0 to 255 (28 – 1). The MATLAB sound and
soundsc functions support only single- or double-precision values between
-1 and 1. Other audio functions support multiple data types, as indicated on
the function reference pages.

7-22



8

XML Documents

• “Importing XML Documents” on page 8-2

• “Exporting to XML Documents” on page 8-6



8 XML Documents

Importing XML Documents
To read an XML file from your local disk or from a URL, use the xmlread
function. xmlread returns the contents of the file in a Document Object Model
(DOM) node. For more information, see:

• “What Is an XML Document Object Model (DOM)?” on page 8-2

• “Example — Finding Text in an XML File” on page 8-3

What Is an XML Document Object Model (DOM)?
In a Document Object Model, every item in an XML file corresponds to a node.
The properties and methods for DOM nodes (that is, the way you create and
access nodes) follow standards set by the World Wide Web consortium.

For example, consider this sample XML file:

<productinfo

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.mathworks.com/namespace/info/v1/info.xsd">

<!-- This is a sample info.xml file. -->

<list>

<listitem>

<label>Import Wizard</label>

<callback>uiimport</callback>

<icon>ApplicationIcon.GENERIC_GUI</icon>

</listitem>

<listitem>

<label>Profiler</label>

<callback>profile viewer</callback>

<icon>ApplicationIcon.PROFILER</icon>

</listitem>

</list>

</productinfo>

8-2



Importing XML Documents

The information in the file maps to the following types of nodes in a DOM:

• Element nodes— Corresponds to tag names. In the sample info.xml file,
these tags correspond to element nodes:

- productinfo

- list

- listitem

- label

- callback

- icon

In this case, the list element is the parent of listitem element child
nodes. The productinfo element is the root element node.

• Text nodes— Contains values associated with element nodes. Every text
node is the child of an element node. For example, the Import Wizard text
node is the child of the first label element node.

• Attribute nodes — Contains name and value pairs associated with an
element node. For example, xmlns:xsi is the name of an attribute and
http://www.w3.org/2001/XMLSchema-instance is its value. Attribute
nodes are not parents or children of any nodes.

• Comment nodes — Includes additional text in the file, in the form
<!--Sample comment-->.

• Document nodes — Corresponds to the entire file. Use methods on the
document node to create new element, text, attribute, or comment nodes.

For a complete list of the methods and properties of
DOM nodes, see the org.w3c.dom package description at
http://download.oracle.com/javase/6/docs/api/.

Example — Finding Text in an XML File
The full matlabroot/toolbox/matlab/general/info.xml file contains
several listitem elements, such as:

<listitem>
<label>Import Wizard</label>

8-3

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html


8 XML Documents

<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>

One of the label elements has the child text Plot Tools. Suppose that you
want to find the text for the callback element in the same listitem. Follow
these steps:

1 Initialize your variables, and call xmlread to obtain the document node:

findLabel = 'Plot Tools';
findCbk = '';

xDoc = xmlread(fullfile(matlabroot, ...
'toolbox','matlab','general','info.xml'));

2 Find all the listitem elements. The getElementsByTagName method returns
a deep list that contains information about the child nodes:

allListitems = xDoc.getElementsByTagName('listitem');

Note Lists returned by DOM methods use zero-based indexing.

3 For each listitem, compare the text for the label element to the text you
want to find. When you locate the correct label, get the callback text:

for k = 0:allListitems.getLength-1
thisListitem = allListitems.item(k);

% Get the label element. In this file, each
% listitem contains only one label.
thisList = thisListitem.getElementsByTagName('label');
thisElement = thisList.item(0);

% Check whether this is the label you want.
% The text is in the first child node.
if strcmp(thisElement.getFirstChild.getData, findLabel)

thisList = thisListitem.getElementsByTagName('callback');
thisElement = thisList.item(0);

8-4



Importing XML Documents

findCbk = char(thisElement.getFirstChild.getData);
break;

end

end

4 Display the final results:

if ~isempty(findCbk)
msg = sprintf('Item "%s" has a callback of "%s."',...

findLabel, findCbk);
else

msg = sprintf('Did not find the "%s" item.', findLabel);
end
disp(msg);

For an additional example that creates a structure array to store data from an
XML file, see the xmlread function reference page.

8-5



8 XML Documents

Exporting to XML Documents
To write data to an XML file, use the xmlwrite function. xmlwrite requires
that you describe the file in a Document Object Model (DOM) node. For an
introduction to DOM nodes, see “What Is an XML Document Object Model
(DOM)?” on page 8-2

For more information, see:

• “Creating an XML File” on page 8-6

• “Updating an Existing XML File” on page 8-8

Creating an XML File
Although each file is different, these are common steps for creating an XML
document:

1 Create a document node and define the root element by calling this method:

docNode =
com.mathworks.xml.XMLUtils.createDocument('root_element');

2 Get the node corresponding to the root element by calling
getDocumentElement. The root element node is required for adding child
nodes.

3 Add element, text, comment, and attribute nodes by calling methods on the
document node. Useful methods include:

• createElement

• createTextNode

• createComment

• setAttribute

For a complete list of the methods and properties of
DOM nodes, see the org.w3c.dom package description at
http://download.oracle.com/javase/6/docs/api/.

8-6

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html


Exporting to XML Documents

4 As needed, define parent/child relationships by calling appendChild on the
parent node.

Tip Text nodes are always children of element nodes. To add a text node, call
createTextNode on the document node, and then call appendChild on the
parent element node.

Example — Creating an XML File with xmlwrite
Suppose that you want to create an info.xml file for the Upslope Area
Toolbox (described in “Display Custom Documentation”), as follows:

<?xml version="1.0" encoding="utf-8"?>

<toc version="2.0">

<tocitem target="upslope_product_page.html">Upslope Area Toolbox<!-- Functions -->

<tocitem target="demFlow_help.html">demFlow</tocitem>

<tocitem target="facetFlow_help.html">facetFlow</tocitem>

<tocitem target="flowMatrix_help.html">flowMatrix</tocitem>

<tocitem target="pixelFlow_help.html">pixelFlow</tocitem>

</tocitem>

</toc>

To create this file using xmlwrite, follow these steps:

1 Create the document node and root element, toc:

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');

2 Identify the root element, and set the version attribute:

toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

3 Add the tocitem element node for the product page. Each tocitem element in
this file has a target attribute and a child text node:

product = docNode.createElement('tocitem');
product.setAttribute('target','upslope_product_page.html');
product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));
toc.appendChild(product)

8-7



8 XML Documents

4 Add the comment:

product.appendChild(docNode.createComment(' Functions '));

5 Add a tocitem element node for each function, where the target is of the
form function_help.html:

functions = {'demFlow','facetFlow','flowMatrix','pixelFlow'};
for idx = 1:numel(functions)

curr_node = docNode.createElement('tocitem');

curr_file = [functions{idx} '_help.html'];
curr_node.setAttribute('target',curr_file);

% Child text is the function name.
curr_node.appendChild(docNode.createTextNode(functions{idx}));
product.appendChild(curr_node);

end

6 Export the DOM node to info.xml, and view the file with the type function:

xmlwrite('info.xml',docNode);
type('info.xml');

Updating an Existing XML File
To change data in an existing file, call xmlread to import the file into a DOM
node. Traverse the node and add or change data using methods defined by the
World Wide Web consortium, such as:

• getElementsByTagName

• getFirstChild

• getNextSibling

• getNodeName

• getNodeType

When the DOM node contains all your changes, call xmlwrite to overwrite
the file.

8-8



Exporting to XML Documents

For a complete list of the methods and properties of
DOM nodes, see the org.w3c.dom package description at
http://download.oracle.com/javase/6/docs/api/.

For examples that use these methods, see:

• “Example — Finding Text in an XML File” on page 8-3

• “Example — Creating an XML File with xmlwrite” on page 8-7

• xmlread and xmlwrite

8-9

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html


8 XML Documents

8-10



9

Memory-Mapping Data
Files

• “Overview of Memory-Mapping” on page 9-2

• “Map File to Memory” on page 9-7

• “Read Mapped File” on page 9-12

• “Write to Mapped File” on page 9-19

• “Delete Memory Map” on page 9-27

• “Share Memory Between Applications” on page 9-28



9 Memory-Mapping Data Files

Overview of Memory-Mapping

In this section...

“What Is Memory-Mapping?” on page 9-2

“Benefits of Memory-Mapping” on page 9-2

“When to Use Memory-Mapping” on page 9-4

“Maximum Size of a Memory Map” on page 9-5

“Byte Ordering” on page 9-6

What Is Memory-Mapping?
Memory-mapping is a mechanism that maps a portion of a file, or an entire
file, on disk to a range of addresses within an application’s address space. The
application can then access files on disk in the same way it accesses dynamic
memory. This makes file reads and writes faster in comparison with using
functions such as fread and fwrite.

Benefits of Memory-Mapping
The principal benefits of memory-mapping are efficiency, faster file access,
the ability to share memory between applications, and more efficient coding.

Faster File Access
Accessing files via memory map is faster than using I/O functions such as
fread and fwrite. Data are read and written using the virtual memory
capabilities that are built in to the operating system rather than having to
allocate, copy into, and then deallocate data buffers owned by the process.

MATLAB does not access data from the disk when the map is first constructed.
It only reads or writes the file on disk when a specified part of the memory
map is accessed, and then it only reads that specific part. This provides faster
random access to the mapped data.

9-2



Overview of Memory-Mapping

Efficiency
Mapping a file into memory allows access to data in the file as if that data had
been read into an array in the application’s address space. Initially, MATLAB
only allocates address space for the array; it does not actually read data from
the file until you access the mapped region. As a result, memory-mapped files
provide a mechanism by which applications can access data segments in an
extremely large file without having to read the entire file into memory first.

Efficient Coding Style
Memory-mapping in your MATLAB application enables you to access file
data using standard MATLAB indexing operations. Once you have mapped a
file to memory, you can read the contents of that file using the same type of
MATLAB statements used to read variables from the MATLAB workspace.
The contents of the mapped file appear as if they were an array in the
currently active workspace. You simply index into this array to read or write
the desired data from the file. Therefore, you do not need explicit calls to the
fread and fwrite functions.

In MATLAB, if x is a memory-mapped variable, and y is the data to be written
to a file, then writing to the file is as simple as

x.Data = y;

9-3



9 Memory-Mapping Data Files

Sharing Memory Between Applications
Memory-mapped files also provide a mechanism for sharing data between
applications, as shown in the figure below. This is achieved by having each
application map sections of the same file. You can use this feature to transfer
large data sets between MATLAB and other applications.

Also, within a single application, you can map the same segment of a file
more than once.

When to Use Memory-Mapping
Just how much advantage you get from mapping a file to memory depends
mostly on the size and format of the file, the way in which data in the file is
used, and the computer platform you are using.

9-4



Overview of Memory-Mapping

When Memory-Mapping Is Most Useful
Memory-mapping works best with binary files, and in the following scenarios:

• For large files that you want to access randomly one or more times

• For small files that you want to read into memory once and access
frequently

• For data that you want to share between applications

• When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant
The following types of files do not fully use the benefits of memory-mapping:

• Formatted binary files like HDF or TIFF that require customized readers
are not good for memory-mapping. Describing the data contained in these
files can be a very complex task. Also, you cannot access data directly from
the mapped segment, but must instead create arrays to hold the data.

• Text or ASCII files require that you convert the text in the mapped region
to an appropriate type for the data to be meaningful. This takes up
additional address space.

• Files that are larger than several hundred megabytes in size consume a
significant amount of the virtual address space needed by MATLAB to
process your program. Mapping files of this size may result in MATLAB
reporting out-of-memory errors more often. This is more likely if MATLAB
has been running for some time, or if the memory used by MATLAB
becomes fragmented.

Maximum Size of a Memory Map
Due to limits set by the operating system and MATLAB, the maximum
amount of data you can map with a single instance of a memory map is 2
gigabytes on 32-bit systems, and 256 terabytes on 64-bit systems. If you
need to map more than this limit, you can either create separate maps
for different regions of the file, or you can move the window of one map to
different locations in the file.

9-5



9 Memory-Mapping Data Files

Byte Ordering
Memory-mapping works only with data that have the same byte ordering
scheme as the native byte ordering of your operating system. For example,
because both Linus Torvalds’ Linux and Microsoft Windows systems use
little-endian byte ordering, data created on a Linux system can be read on
Windows systems. You can use the computer function to determine the native
byte ordering of your current system.

9-6



Map File to Memory

Map File to Memory

In this section...

“Create a Simple Memory Map” on page 9-7

“Specify Format of Your Mapped Data” on page 9-8

“Map Multiple Data Types and Arrays” on page 9-9

“Select File to Map” on page 9-11

Create a Simple Memory Map
Suppose you want to create a memory map for a file named records.dat,
using the memmapfile function.

Create a sample file named records.dat, containing 5000 values.

myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

Next, create the memory map. Use the Format name-value pair argument to
specify that the values are of type double. Use the Writable name-value pair
argument to allow write access to the mapped region.

m = memmapfile('records.dat', ...
'Format', 'double', ...
'Writable', true)

m =

Filename: 'd:\matlab\records.dat'
Writable: true

Offset: 0
Format: 'double'
Repeat: Inf

Data: 5000x1 double array

9-7



9 Memory-Mapping Data Files

MATLAB creates a memmapfile object, m. The Format property indicates that
read and write operations to the mapped region treat the data in the file as a
sequence of double-precision numbers. The Data property contains the 5000
values from the file, records.dat. You can change the value of any of the
properties, except for Data, after you create the memory map, m.

For example, change the starting position of the memory map, m. Begin the
mapped region 1024 bytes from the start of the file by changing the value of
the Offset property.

m.Offset = 1024

m =

Filename: 'd:\matlab\records.dat'
Writable: true

Offset: 1024
Format: 'double'
Repeat: Inf

Data: 4872x1 double array

Whenever you change the value of a memory map property, MATLAB remaps
the file to memory. The Data property now contains only 4872 values.

Specify Format of Your Mapped Data
By default, MATLAB considers all the data in a mapped file to be a sequence
of unsigned 8-bit integers. However, your data might be of a different data
type. When you call the memmapfile function, use the Format name-value pair
argument to indicate another data type. The value of Format can either be a
character string that identifies a single class used throughout the mapped
region, or a cell array that specifies more than one class.

Suppose you map a file that is 12 kilobytes in length. Data read from this file
can be treated as a sequence of 6,000 16-bit (2-byte) integers, or as 1,500 8-byte
double-precision floating-point numbers, to name just a few possibilities. You
also could read this data as a combination of different types: for example, as
4,000 8-bit (1-byte) integers followed by 1,000 64-bit (8-byte) integers. You
can determine how MATLAB will interpret the mapped data by setting the
Format property of the memory map when you call the memmapfile function.

9-8



Map File to Memory

MATLAB arrays are stored on disk in column-major order. The sequence
of array elements is column 1, row 1; column 1, row 2; column 1, last row;
column 2, row 1, and so on. You might need to transpose or rearrange the
order of array elements when reading or writing via a memory map.

Map Multiple Data Types and Arrays
If the region you are mapping comprises segments of varying data types or
array shapes, you can specify an individual format for each segment. Specify
the value of the Format name-value pair argument as an n-by-3 cell array,
where n is the number of segments. Each row in the cell array corresponds
to a segment. The first cell in the row contains a string identifying the data
type to apply to the mapped segment. The second cell contains the array
dimensions to apply to the segment. The third cell contains a string specifying
the field name for referencing that segment. For a memory map, m, use the
following syntax:

m = memmapfile(filename, ...
'Format', { ...

datatype1, dimensions1, fieldname1; ...
datatype2, dimensions2, fieldname2; ...

: : : ...
datatypeN, dimensionsN, fieldnameN})

Suppose you have a file that is 40,000 bytes in length. The following code maps
the data beginning at the 2048th byte. The Format value is a 3-by-3 cell array
that maps the file data to three different classes: int16, uint32, and single.

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

In this case, memmapfile maps the int16 data as a 2-by-2 matrix that you
can access using the field name, model. The uint32 data is a scalar value
accessed using the field name, serialno. The single data is a 1-by-3 matrix
named expenses. Each of these fields belongs to the 800-by-1 structure array,
m.Data.

9-9



9 Memory-Mapping Data Files

This figure shows the mapping of the example file.

The next figure shows the ordering of the array elements more closely. In
particular, it illustrates that MATLAB arrays are stored on the disk in
column-major order. The sequence of array elements in the mapped file is row
1, column 1; row 2, column 1; row 1, column 2; and row 2, column 2.

9-10



Map File to Memory

If the data in your file is not stored in this order, you might need to transpose
or rearrange the order of array elements when reading or writing via a
memory map.

Select File to Map
You can change the value of the Filename property at any time after
constructing the memmapfile object. You might want to do this if:

• You want to use the same memmapfile object on more than one file.

• You save your memmapfile object to a MAT-file, and then later load it back
into MATLAB in an environment where the mapped file has been moved to
a different location. This requires that you modify the path segment of the
Filename string to represent the new location.

Update the path in the Filename property for a memory map using dot
notation. For example, to specify a new path, f:\testfiles\records.dat
for a memory map, m, type:

m.Filename = 'f:\testfiles\records.dat'

See Also memmapfile

Concepts • “Read Mapped File” on page 9-12
• “Write to Mapped File” on page 9-19

9-11



9 Memory-Mapping Data Files

Read Mapped File
This example shows how to create two different memory maps, and then read
from each of the maps using the appropriate syntax. Then, it shows how to
modify map properties and analyze your data.

You can read the contents of a file that you mapped to memory using the
same MATLAB® commands you use to read variables from the MATLAB
workspace. By accessing the Data property of the memory map, the contents
of the mapped file appear as an array in the currently active workspace. To
read the data you want from the file, simply index into the array. For better
performance, copy the Data field to a variable, and then read the mapped
file using this variable:

dataRef = m.Data;
for k = 1 : N

y(k) = dataRef(k);
end

By contrast, reading directly from the memmapfile object is slower:

for k = 1 : N
y(k) = m.Data(k);

end

Read from Memory Mapped as Numeric Array

First, create a sample data file named records.dat that contains a 5000-by-1
matrix of double-precision floating-point numbers.

randData = gallery('uniformdata',[5000,1],0);

fileID = fopen('records.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Map 100 double-precision floating-point numbers from the file to memory, and
then read a portion of the mapped data. Create the memory map, m. Specify
an Offset value of 1024 to begin the map 1024 bytes from the start of the file.
Specify a Repeat value of 100 to map 100 values.

9-12



Read Mapped File

m = memmapfile('records.dat','Format','double', ...
'Offset',1024,'Repeat',100);

Copy the Data property to a variable, d. Then, show the format of d.

d = m.Data;

whos d

Name Size Bytes Class Attributes

d 100x1 800 double

The mapped data is an 800-byte array because there are 100 double values,
each requiring 8 bytes.

Read a selected set of numbers from the file by indexing into the vector, d.

d(15:20)

ans =

0.8392
0.6288
0.1338
0.2071
0.6072
0.6299

Read from Memory Mapped as Nonscalar Structure

Map portions of data in the file, records.dat, as a sequence of multiple data
types.

Call the memmapfile function to create a memory map, m.

m = memmapfile('records.dat', ...

9-13



9 Memory-Mapping Data Files

'Format', { ...
'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

The Format parameter tells memmapfile to treat the first 80 bytes of the file
as a 5-by-8 matrix of uint16 values, and the 160 bytes after that as a 4-by-5
matrix of double values. This pattern repeats until the end of the file is
reached.

Copy the Data property to a variable, d.

d = m.Data

d =

166x1 struct array with fields:

x
y

d is a 166-element structure array with two fields. d is a nonscalar structure
array because the file is mapped as a repeating sequence of multiple data
types.

Examine one structure in the array to show the format of each field.

d(3)

ans =

x: [5x8 uint16]
y: [4x5 double]

Read the x field of that structure from the file.

d(3).x

9-14



Read Mapped File

ans =

19972 47529 19145 16356 46507 47978 35550 16341
60686 51944 16362 58647 35418 58072 16338 62509
51075 16364 54226 34395 8341 16341 33787 57669
16351 35598 6686 11480 16357 28709 36239 5932
44292 15577 41755 16362 30311 31712 54813 16353

MATLAB formats the block of data as a 5-by-8 matrix of uint16 values, as
specified by the Format property.

Read the y field of that structure from the file.

d(3).y

ans =

0.7271 0.3704 0.6946 0.5226 0.2714
0.3093 0.7027 0.6213 0.8801 0.2523
0.8385 0.5466 0.7948 0.1730 0.8757
0.5681 0.4449 0.9568 0.9797 0.7373

MATLAB formats the block of data as a 4-by-5 matrix of double values.

Modify Map Properties and Analyze Data

This part of the example shows how to plot the Fourier transform of data
read from a file via a memory map. It then modifies several properties of
the existing map, reads from a different part of the data file, and plots a
histogram from that data.

Create a sample file named double.dat.

randData = gallery('uniformdata',[5000,1],0);
fileID = fopen('double.dat','w');

9-15



9 Memory-Mapping Data Files

fwrite(fileID,randData,'double');
fclose(fileID);

Create a memmapfile object of 1,000 elements of type double, starting at
the 1025th byte.

m = memmapfile('double.dat','Offset',1024, ...
'Format','double','Repeat',1000);

Copy the Data property to a variable, k. Then, get data associated with the
map and plot the FFT of the first 100 values of the map.

k = m.Data;
plot(abs(fft(k(1:100))))

9-16



Read Mapped File

This is the first time that data is referenced and is when the actual mapping
of the file to the MATLAB address space takes place.

Change the map properties, but continue using the same file. Whenever
you change the value of a memory map property, MATLAB remaps the file
to memory.

m.Offset = 4096;
m.Format = 'single';
m.Repeat = 800;

9-17



9 Memory-Mapping Data Files

m is now a memmapfile object of 800 elements of type single. The map now
begins at the 4096th byte in the file, records.dat.

Read from the portion of the file that begins at the 4096th byte, and calculate
the maximum value of the data. This command maps a new region and
unmaps the previous region.

X = max(m.Data)

X =

7.5449e+37

See Also memmapfile

Concepts • “Map File to Memory” on page 9-7
• “Write to Mapped File” on page 9-19

9-18



Write to Mapped File

Write to Mapped File
This example shows how to create three different memory maps, and then
write to each of the maps using the appropriate syntax. Then, it shows how to
work with copies of your mapped data.

You can write to a file using the same MATLAB commands you use to access
variables in the MATLAB workspace. By accessing the Data property of the
memory map, the contents of the mapped file appear as an array in the
currently active workspace. Simply index into this array to write data to
the file. The syntax to use when writing to mapped memory depends on the
format of the Data property of the memory map.

In this section...

“Write to Memory Mapped as Numeric Array” on page 9-19

“Write to Memory Mapped as Scalar Structure” on page 9-21

“Write to Memory Mapped as Nonscalar Structure” on page 9-21

“Syntaxes for Writing to Mapped File” on page 9-23

“Work with Copies of Your Mapped Data” on page 9-24

Write to Memory Mapped as Numeric Array
First, create a sample file named records.dat, in your current folder.

myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

Map the file as a sequence of 16-bit-unsigned integers. Use the Format
name-value pair argument to specify that the values are of type uint16.

m = memmapfile('records.dat', ...
'Offset',20, ...
'Format','uint16', ...
'Repeat',15);

9-19



9 Memory-Mapping Data Files

Because the file is mapped as a sequence of a single class (uint16), Data is
a numeric array.

Ensure that you have write permission to the mapped file. Set the Writable
property of the memory map, m, to true.

m.Writable = true;

Create a matrix X that is the same size as the Data property, and write it to
the mapped part of the file. All of the usual MATLAB indexing and class rules
apply when assigning values to data via a memory map. The class that you
assign to must be big enough to hold the value being assigned.

X = uint16(1:1:15);
m.Data = X;

X is a 1-by-15 vector of integer values ranging from 1 to 15.

Verify that new values were written to the file. Specify an Offset value of 0
to begin reading from the beginning of the file. Specify a Repeat value of 35 to
view a total of 35 values. Use the reshape function to display the values as
a 7-by-5 matrix.

m.Offset = 0;
m.Repeat = 35;
reshape(m.Data,5,7)'

ans =

47662 34773 26485 16366 58664
25170 38386 16333 14934 9028

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
10085 14020 16349 37120 31342
62110 16274 9357 44395 18679

9-20



Write to Mapped File

The values in X have been written to the file, records.dat .

Write to Memory Mapped as Scalar Structure
Map a region of the file, records.dat, as a 300-by-8 matrix of type uint16
that can be referenced by the field name, x, followed by a 200-by-5 matrix
of type double that can be reference by the field name, y. Specify write
permission to the mapped file using the Writable name-value pair argument.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [300 8] 'x'; ...
'double' [200 5] 'y' }, ...

'Repeat', 1, 'Writable', true);

View the Data property

m.Data

ans =

x: [300x8 uint16]
y: [200x5 double]

Data is a scalar structure array. This is because the file, records.dat, is
mapped as containing multiple data types that do not repeat.

Replace the matrix in the field, x, with a matrix of all ones.

m.Data.x = ones(300,8,'uint16');

Write to Memory Mapped as Nonscalar Structure
Map the file, records.dat, as a 25-by-8 matrix of of type uint16 followed by a
15-by-5 matrix of type double. Repeat the pattern 20 times.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 4] 'x'; ...

9-21



9 Memory-Mapping Data Files

'double' [15 5] 'y' }, ...
'Repeat', 20, 'Writable', true);

View the Data property

m.Data

ans =

20x1 struct array with fields:

x
y

Data is a nonscalar structure array, because the file is mapped as a repeating
sequence of multiple data types.

Write an array of all ones to the field named x in the 12th element of Data.

m.Data(12).x = ones(5,4,'uint16');

For the 12th element of Data, write the value, 50, to all elements in rows
3 to 5 of the field, x.

m.Data(12).x(3:5,1:end) = 50;

View the field, x, of the 12th element of Data.

m.Data(12).x

ans =

1 1 1 1
1 1 1 1

50 50 50 50
50 50 50 50
50 50 50 50

9-22



Write to Mapped File

Syntaxes for Writing to Mapped File
The syntax to use when writing to mapped memory depends on the format
of the Data property of the memory map. View the properties of the memory
map by typing the name of the memmapfile object.

This table shows the syntaxes for writing a matrix, X, to a memory map, m.

Format of the Data
Property

Syntax for Writing to Mapped File

Numeric array

Example: 15x1 uint16
array

m.Data = X;

Scalar (1-by-1) structure
array

Example:

1x1 struct array with fields:
x
y

m.Data.fieldname = X;

fieldname is the name of a field.

Nonscalar (n-by-1)
structure array

Example:

20x1 struct array with fields:
x
y

m.Data(k).fieldname = X;

k is a scalar index and fieldname is the name
of a field.

The class of X and the number of elements in X must match those of the Data
property or the field of the Data property being accessed. You cannot change
the dimensions of the Data property after you have created the memory map
using the memmapfile function. For example, you cannot diminish or expand
the size of an array by removing or adding a row from the mapped array,
m.Data.

9-23



9 Memory-Mapping Data Files

If you map an entire file and then append to that file after constructing the
map, the appended data is not included in the mapped region. If you need to
modify the dimensions of data that you have mapped to a memory map, m,
you must either modify the Format or Repeat properties for m, or recreate m
using the memmapfile function.

Note To successfully modify a mapped file, you must have write permission
for that file. If you do not have write permission, attempting to write to the
file generates an error, even if the Writable property is true.

Work with Copies of Your Mapped Data
This part of the example shows how to work with copies of your mapped
data. The data in variable d is a copy of the file data mapped by m.Data(2).
Because it is a copy, modifying array data in d does not modify the data
contained in the file.

Create a sample file named double.dat.

myData = gallery('uniformdata',[5000,1],0) * 100;
fileID = fopen('double.dat','w');
fwrite(fileID,myData,'double');
fclose(fileID);

Map the file as a series of double matrices.

m = memmapfile('double.dat', ...
'Format', { ...

'double' [5 5] 'x'; ...
'double' [4 5] 'y' });

View the values in m.Data(2).x.

m.Data(2).x

ans =

50.2813 19.3431 69.7898 49.6552 66.0228

9-24



Write to Mapped File

70.9471 68.2223 37.8373 89.9769 34.1971
42.8892 30.2764 86.0012 82.1629 28.9726
30.4617 54.1674 85.3655 64.4910 34.1194
18.9654 15.0873 59.3563 81.7974 53.4079

Copy the contents of m.Data to the variable, d.

d = m.Data;

Write all zeros to the field named x in the copy.

d(2).x(1:5,1:5) = 0;

Verify that zeros are written to d(2).x

d(2).x

ans =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Verify that the data in the mapped file is not changed.

m.Data(2).x

ans =

50.2813 19.3431 69.7898 49.6552 66.0228
70.9471 68.2223 37.8373 89.9769 34.1971
42.8892 30.2764 86.0012 82.1629 28.9726
30.4617 54.1674 85.3655 64.4910 34.1194
18.9654 15.0873 59.3563 81.7974 53.4079

9-25



9 Memory-Mapping Data Files

See Also memmapfile

Concepts • “Map File to Memory” on page 9-7
• “Read Mapped File” on page 9-12

9-26



Delete Memory Map

Delete Memory Map

In this section...

“Ways to Delete a Memory Map” on page 9-27

“The Effect of Shared Data Copies On Performance” on page 9-27

Ways to Delete a Memory Map
To clear a memmapfile object from memory, do any of the following:

• Reassign another value to the memmapfile object’s variable

• Clear the memmapfile object’s variable from memory

• Exit the function scope in which the memmapfile object was created

The Effect of Shared Data Copies On Performance
When you assign the Data field of the memmapfile object to a variable,
MATLAB makes a shared data copy of the mapped data. This is very efficient
because no memory actually gets copied. In the following statement, d is a
shared data copy of the data mapped from the file:

d = m.Data;

When you finish using the mapped data, make sure to clear any variables
that share data with the mapped file before clearing the memmapfile object
itself. If you clear the object first, then the sharing of data between the file
and dependent variables is broken, and the data assigned to such variables
must be copied into memory before the object is cleared. If access to the
mapped file was over a network, then copying this data to local memory can
take considerable time. Therefore, if you assign m.Data to the variable, d,
you should be sure to clear d before clearing m when you are finished with
the memory map.

9-27



9 Memory-Mapping Data Files

Share Memory Between Applications
This example shows how to implement two separate MATLAB processes that
communicate with each other by writing and reading from a shared file. They
share the file by mapping part of their memory space to a common location in
the file. A write operation to the memory map belonging to the first process
can be read from the map belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its
memory map. It also writes the length of the message to byte 1 in the file,
which serves as a means of notifying the other process that a message is
available. The second process (running answer.m) monitors byte 1 and, upon
seeing it set, displays the received message, puts it into uppercase, and echoes
the message back to the sender.

Prior to running the example, copy the send and answer functions to files
send.m and answer.m in your current working directory.

The send Function

This function prompts you to enter a string and then, using memory-mapping,
passes the string to another instance of MATLAB that is running the answer
function.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:send:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

9-28



Share Memory Between Applications

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Set first byte to zero, indicating a message is not
% yet ready.
m.Data(1) = 0;

str = input('Enter send string (or RETURN to end): ', 's');

len = length(str);
if (len == 0)

disp('Terminating SEND function.')
break;

end

% Warn if the message is longer than 255 characters.
if len > 255

warning('ml:ml','SEND input will be truncated to 255 characters.');
end
str = str(1:min(len,255)); % Limit message to 255 characters.
len = length(str); % Update len if str has been truncated.

% Update the file via the memory map.
m.Data(2:len+1) = str;
m.Data(1)=len;

% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1) ~= 0)

pause(.25);
end

% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:len+1))')

end

9-29



9 Memory-Mapping Data Files

The answer Function

The answer function starts a server that, using memory-mapping, watches
for a message from send. When the message is received, answer replaces the
message with an uppercase version of it, and sends this new message back to
send. To use answer, call it with no inputs.

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:answer:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Wait until the first byte is not zero.
while m.Data(1) == 0

pause(.25);
end

% The first byte now contains the length of the message.
% Get it from m.
msg = char(m.Data(2:1+double(m.Data(1))))';

% Display the message.

9-30



Share Memory Between Applications

disp('Received message from SEND:')
disp(msg)

% Transform the message to all uppercase.
m.Data(2:1+double(m.Data(1))) = upper(msg);

% Signal to SEND that the response is ready.
m.Data(1) = 0;

end

Running the Example

To see what the example looks like when it is run, first, start two separate
MATLAB sessions on the same computer system. Call the send function with
no inputs in one MATLAB session. Call the answer function in the other
session, to create a map in each of the processes’ memory to the common file.

Run send in the first MATLAB session.

send

Enter send string (or RETURN to end):

Run answer in the second MATLAB session.

answer

ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB
writes the message to the shared file. The second MATLAB session, running
the answer function, loops on byte 1 of the shared file and, when the byte is
written by send, answer reads the message from the file via its memory map.
The answer function then puts the message into uppercase and writes it back
to the file, and send (waiting for a reply) reads the message and displays it.

send writes a message and reads the uppercase reply.

Hello. Is there anybody out there?

response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?

9-31



9 Memory-Mapping Data Files

Enter send string (or RETURN to end):

answer reads the message from send.

Received message from SEND:
Hello. Is there anybody out there?

Enter a second message at the prompt display by the send function. send
writes the second message to the file.

I received your reply.

response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter send string (or RETURN to end):

answer reads the second message, put it into uppercase, and then writes
the message to the file.

Received message from SEND:
I received your reply.

In the first instance of MATLAB, press Enter to exit the example.

Terminating SEND function.

9-32



10

Internet File Access

MATLAB software provides functions for exchanging files over the Internet.
You can exchange files using common protocols, such as File Transfer Protocol
(FTP), Simple Mail Transport Protocol (SMTP), and HyperText Transfer
Protocol (HTTP). In addition, you can create zip archives to minimize the
transmitted file size, and also save and work with Web pages.

• “Downloading Web Content and Files” on page 10-2

• “Sending Email” on page 10-4

• “Performing FTP File Operations” on page 10-7

• “Display Hyperlinks in the Command Window” on page 10-9



10 Internet File Access

Downloading Web Content and Files
MATLAB provides two functions for downloading Web pages and files using
HTTP: urlread and urlwrite. With the urlread function, you can read
and save the contents of a Web page to a string variable in the MATLAB
workspace. With the urlwrite function, you can save a Web page’s content
to a file.

Because it creates a string variable in the workspace, the urlread function is
useful for working with the contents of Web pages in MATLAB. The urlwrite
function is useful for saving Web pages to a local folder.

Note When using urlread, remember that only the HTML in that specific
Web page is retrieved. The hyperlink targets, images, and so on are not
retrieved.

If you need to pass parameters to a Web page, the urlread and urlwrite
functions let you use HTTP post and get methods. For more information, see
the urlread and urlwrite reference pages.

Example — Using the urlread Function
The following procedure demonstrates how to retrieve the contents of the
Web page listing the files submitted to the MATLAB Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/. It assigns the
results to a string variable, fullList:

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
fullList = urlread(filex);

To pass arguments, you can include them manually using the URL, or pass
parameters using standard HTTP methods, including post and get.

For example, to pass arguments as part of the URL, and retrieve only the files
uploaded to the Central File Exchange within the past 7 days that contain the
word Simulink:

filex = sprintf('%s%s',...

10-2

http://www.mathworks.com/matlabcentral/fileexchange/


Downloading Web Content and Files

'http://www.mathworks.com/matlabcentral/fileexchange/',...
'?duration=7&term=simulink');

recent = urlread(filex);

Alternatively, use the HTTP get method to query the list of files:

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

recent = urlread(filex,'get',params);

For more information, see the urlread reference page.

Example — Using the urlwrite Function
The following example builds on the procedure in the previous section, but
saves the content to a file:

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

% Save the Web content to a file.
urlwrite(filex,'contains_simulink.html','get',params);

MATLAB saves the Web page as contains_simulink.html.

10-3



10 Internet File Access

Sending Email
To send an email from MATLAB, use the sendmail function. You can also
attach files to an email, which lets you mail files directly from MATLAB. To
use sendmail, you must first set up your email address and your SMTP server
information with the setpref function.

The setpref function defines two mail-related preferences:

• Email address: This preference sets your email address that will appear on
the message. Here is an example of the syntax:

setpref('Internet','E_mail','youraddress@yourserver.com');

• SMTP server: This preference sets your outgoing SMTP server address,
which can be almost any email server that supports the Post Office Protocol
(POP) or the Internet Message Access Protocol (IMAP). Here is an example
of the syntax:

setpref('Internet', 'SMTP_Server', 'mail.server.network');

You should be able to find your outgoing SMTP server address in your email
account settings in your email client application. You can also contact your
system administrator for the information.

Note The sendmail function does not support email servers that require
authentication.

Once you have properly configured MATLAB, you can use the sendmail
function. The sendmail function requires at least two arguments: the
recipient’s email address and the email subject:

sendmail('recipient@someserver.com', 'Hello From MATLAB!');

You can supply multiple email addresses using a cell array of strings, such as:

sendmail({'recipient@someserver.com', ...
'recipient2@someserver.com'}, 'Hello From MATLAB!');

10-4



Sending Email

You can also specify a message body with the sendmail function, such as:

sendmail('recipient@someserver.com', 'Hello From MATLAB!', ...
'Thanks for using sendmail.');

In addition, you can also attach files to an email using the sendmail function,
such as:

sendmail('recipient@someserver.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', 'C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message
can be empty. You can also attach multiple files to an email with the
sendmail function, such as:

sendmail('recipient@someserver.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', ...
{'C:\yourFileSystem\message.txt',...
'C:\yourFileSystem\message2.txt'});

Example — Using the sendmail Function
The following example sends email with the retrieved Web page archive
attached:

% NOTE: CHANGE THESE 2 LINES OF CODE TO REFLECT YOUR SETTINGS.
mySMTP = 'mail.server.network';
myEmail = 'youraddress@yourserver.com';

% Set your email and SMTP server address in MATLAB.
setpref('Internet','SMTP_Server',mySMTP);
setpref('Internet','E_mail',myEmail);

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

% Save the Web content to a file.
urlwrite(filex,'contains_simulink.html','get',params);

10-5



10 Internet File Access

% Create a zip archive of the retrieved Web page.
zip('simulink_matches.zip','contains_simulink.html');

% Send an email (to yourself) with the zip archive attached.
recipient = myEmail;
subj = 'List of New Simulink Files';
msg = ...

'Attached: new Similink files uploaded to MATLAB Central.';
attFile = 'simulink_matches.zip';
sendmail(recipient,subj,msg,attFile);

10-6



Performing FTP File Operations

Performing FTP File Operations
From MATLAB, you can connect to an FTP server to perform remote file
operations. The following procedure uses a public MathWorks FTP server
(ftp.mathworks.com). To perform any file operation on an FTP server, follow
these steps:

1 Connect to the server using the ftp function.

2 Perform file operations using appropriate MATLAB FTP functions. For all
operations, specify the server object. For a complete list of functions, see
the FTP reference page.

3 When you finish working on the server, close the connection object using the
close function.

Example — Retrieving a File from an FTP Server
List the contents of the MathWorks FTP server and retrieve a file named
README To view the file, use the type function.

tmw = ftp('ftp.mathworks.com');
dir(tmw)

mget(tmw, 'README');
type README

README contains the following text:

Welcome to the MathWorks FTP site!
The MathWorks FTP site has a new structure:

/incoming - where you upload files to
/outgoing - where you pick up files from

NOTE: Files in the above directories will be removed after 30 days.

You may also want to visit the MathWorks Web site at

http://www.mathworks.com

10-7



10 Internet File Access

Send questions/comments/suggestions to ftpadmin@mathworks.com

View the contents of the pub folder:

cd(tmw, 'pub')
dir(tmw)

% Close the connection
close(tmw)

10-8



Display Hyperlinks in the Command Window

Display Hyperlinks in the Command Window

In this section...

“Creating Hyperlinks to Web Pages” on page 10-9

“Transferring Files Using FTP” on page 10-9

Creating Hyperlinks to Web Pages
When creating a hyperlink to a Web page, append a full hypertext string
on a single line as input to the disp or fprintf command. For example,
the following command:

disp('<a href = "http://www.mathworks.com">The MathWorks Web Site</a>')

displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays
the requested page.

Transferring Files Using FTP
To create a link to an FTP site, enter the site address as input to the disp
command as follows:

disp('<a href = "ftp://ftp.mathworks.com">The MathWorks FTP Site</a>')

This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested
FTP site.

10-9

http://www.mathworks.com
ftp://ftp.mathworks.com


10 Internet File Access

10-10



11

Install and Use Raspberry
Pi Hardware

• “Install Support for Raspberry Pi Hardware” on page 11-3

• “Guidelines for Entering Static IP Settings” on page 11-17

• “Open Interactive Examples” on page 11-18

• “Connecting to Raspberry Pi Hardware” on page 11-20

• “Connect to Raspberry Pi Hardware” on page 11-22

• “Troubleshoot Connecting to Raspberry Pi Hardware” on page 11-25

• “Get the IP Address of the Raspberry Pi Hardware” on page 11-27

• “The Raspberry Pi LED” on page 11-29

• “Turn the Raspberry Pi LED On and Off” on page 11-31

• “Flash the Raspberry Pi LED in Response to an Input” on page 11-34

• “The Raspberry Pi GPIO Pins” on page 11-35

• “Use the Raspberry Pi GPIO Pins as Digital Inputs and Outputs” on page
11-36

• “Troubleshoot Raspberry Pi GPIO Pins” on page 11-40

• “The Raspberry Pi Serial Port” on page 11-42

• “Use the Raspberry Pi Serial Port to Connect to a Device” on page 11-43

• “Troubleshoot the Raspberry Pi Serial Port” on page 11-48

• “The Raspberry Pi I2C Interface” on page 11-49

• “Use the Raspberry Pi I2C Interface to Connect to a Device” on page 11-50



11 Install and Use Raspberry Pi™ Hardware

• “Troubleshoot the Raspberry Pi I2C Interface” on page 11-54

• “The Raspberry Pi SPI Interface” on page 11-55

• “Use the Raspberry Pi SPI Interface to Connect to a Device” on page 11-57

• “The Raspberry Pi Camera Board” on page 11-61

• “Use the Raspberry Pi Camera Board to Capture Images and Video” on
page 11-63

• “Troubleshoot the Raspberry Pi Camera Board” on page 11-65

• “The Raspberry Pi Linux Command Interface” on page 11-66

• “Run Linux Commands on Raspberry Pi Hardware” on page 11-67

• “Troubleshoot Running Linux Commands on Raspberry Pi Hardware” on
page 11-70

• “Management of Raspberry Pi Files” on page 11-71

• “Manage Raspberry Pi Files” on page 11-72

• “Troubleshoot Managing Raspberry Pi Files” on page 11-73

11-2



Install Support for Raspberry Pi™ Hardware

Install Support for Raspberry Pi Hardware

In this section...

“Install the Support Package” on page 11-3

“Complete Additional Setup Tasks” on page 11-5

Add support for Raspberry Pi™ hardware to the MATLAB product by
installing the MATLAB Support Package for Raspberry Pi Hardware.

This process installs the following items on your host computer:

• Third-party software development tools

• MATLAB commands

• Examples

This process also installs a customized version of Raspian Wheezy on the
Raspberry Pi hardware.

When you complete this installation, you can use MATLAB commands to
control, and retrieve data from, Raspberry Pi hardware and peripherals.

The Raspberry Pi hardware is also referred to as a board or as target
hardware.

Install the Support Package
To install the MATLAB Support Package for Raspberry Pi Hardware:

1 On the MATLAB Toolstrip, click Add-Ons > Get Hardware Support
Packages.

11-3



11 Install and Use Raspberry Pi™ Hardware

2 In Support Package Installer, follow the instructions on each screen.

For more information about the options on a particular screen, click the
Help button.

3 At the Install/update complete screen, choose whether to perform
additional setup tasks:

• Click Continue to set up the Raspberry Pi board.

• If you have already set up the Raspberry Pi board for this specific
support package, click Close.

11-4



Install Support for Raspberry Pi™ Hardware

Complete Additional Setup Tasks
Install a customized version of Raspian Wheezy on the Raspberry Pi board:

1 If you clicked Close on the preceding Install/update complete screen,
restart Support Package Installer by entering targetupdater in the
MATLAB Command Window.

2 On the Set up support package screen, set Support package for to
Raspberry Pi (MATLAB), and click Next.

11-5



11 Install and Use Raspberry Pi™ Hardware

3 Review the information, and click Next. The firmware download takes
several minutes.

11-6



Install Support for Raspberry Pi™ Hardware

4 Choose your network configuration:

• Local area or home network — Confirm that the Raspberry Pi
hardware is connected to your host computer using a local area network
(LAN) or home network similar to the ones that the installer displays.
Then, click Next. This option applies dynamic network settings provided
by a DNS service on the network.

11-7



11 Install and Use Raspberry Pi™ Hardware

• Direct connection to host computer— Confirm that the Raspberry
Pi hardware is connected to your host computer using a direct connection
similar to the one that the installer displays. Then, click Next. This
option applies static network settings based upon the network settings
of the host computer.

11-8



Install Support for Raspberry Pi™ Hardware

• Manually enter network settings — To manually configure the
network settings, select this option.

11-9



11 Install and Use Raspberry Pi™ Hardware

Selecting Manually enter network settings displays the following
options:

• Host name— This parameter displays the host name that is assigned
to the Raspberry Pi hardware. If multiple boards are connected to the
network, edit the host name to make it unique.

• Automatically get IP address— This option applies dynamic network
settings provided by a DHCP service on the network.

11-10



Install Support for Raspberry Pi™ Hardware

• Manually enter IP address— Use this option to edit the IP address,
Network mask, and Default gateway settings. Also see “Guidelines
for Entering Static IP Settings” on page 11-17.

5 Insert the SD card into a media card reader that is attached to your host
computer. You host computer assigns a drive letter to the memory card.

Click Refresh, select the drive letter assigned to the SD card, and click
Next.

If multiple drive letters are available, identify the drive letter of the media
card reader. Open the Windows Start menu, choose Computer, and review
the list of Devices with Removable Storage

11-11



11 Install and Use Raspberry Pi™ Hardware

6 ClickWrite. The installer overwrites all previous data on the memory card
with the firmware. This process takes several minutes to complete.

11-12



Install Support for Raspberry Pi™ Hardware

7 Make the connections shown in the figure. When the PWR LED is solid red,
and the ACT or OK LED stops blinking, click Next.

11-13



11 Install and Use Raspberry Pi™ Hardware

8 Keep a record of the IP address, host name, user name, and password.
Then, click Test Connection.

The installer uses SSH to create a test connection to the board using the
host name, user name, and password shown.

• If the test fails, click Back or use the targetupdater function to repeat
the setup process.

• If the test succeeds, the software displays a “Connection successful”
message.

11-14



Install Support for Raspberry Pi™ Hardware

9 Click Finish.

If you leave Show support package examples enabled, the installer
opens the example page for Raspberry Pi hardware.

10 For experience using Simulink® models with Raspberry Pi hardware,
complete the examples.

11-15



11 Install and Use Raspberry Pi™ Hardware

To reopen these examples later, see “Open Interactive Examples” on page
11-18.

11-16



Guidelines for Entering Static IP Settings

Guidelines for Entering Static IP Settings
• The IP address must be unique for each device on the network.

• The Network mask must be the same for all devices on the network. This
value is also known as Subnet mask.

• The Default gateway is usually the same for all devices on the network.

Start by entering ipconfig at the command line of your host computer. This
command displays network settings of the Ethernet adapters on the host
computer. Look for the settings of the Ethernet adapter that is connected to
the target hardware.

Suppose that the Ethernet adapter connected to the target hardware has
the following values:

IPv4 Address. . . . . . . . . . . : 192.168.1.2
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 192.168.1.1

In that case, for the target hardware:

• Set IP address to an unused IP address, between 192.168.1.3 and
192.168.1.254

• Set Network mask to use the same network mask value, 255.255.255.0

11-17



11 Install and Use Raspberry Pi™ Hardware

Open Interactive Examples
The following interactive tutorials and application examples come with the
MATLAB Support Package for Raspberry Pi Hardware.

Tutorials:

• Getting Started with MATLAB Support Package for Raspberry Pi
Hardware

• Getting Started with Raspberry Pi Hardware

• Analog Input Using SPI

• Controlling a 4-Digit 7-Segment Display Using I2C

• Controlling a 4-Digit 7-Segment Display Using Serial Port

• Working with Raspberry Pi Camera Board

Application examples:

• Build a Digital Voltmeter

• Track a Green Ball

• Build a Motion Sensor Camera

• Add Digital I/O Pins to Raspberry Pi Hardware Using MCP23017

After installing the support package, you can open these examples by entering
the following command in a MATLAB Command Window:

raspi_examples

The software opens a window with links to each example.

11-18



Open Interactive Examples

11-19



11 Install and Use Raspberry Pi™ Hardware

Connecting to Raspberry Pi Hardware
You can use MATLAB to connect to and interact with Raspberry Pi hardware.
For example, you can:

• Control on-board LEDs.

• Read and write values to GPIO pins.

• Connect to devices that are connected to:

- Serial port

- I2C interface

- SPI interface

• Record video and take still images using Camera Board.

• Use the Linux command shell.

When you create a connection to the Raspberry Pi hardware, you assign that
connection to a handle whose name you specify. For example:

mypi = raspi;

Use the handle to control the Raspberry Pi hardware. For example, you can
use the handle to illuminates an LED or read the logical state of a GPIO pin:

writeLED(mypi,'led0',1);
readDigitalPin(mypi,4);

You can also use the handle to create a connection to serial, I2C, and SPI
devices attached to the Raspberry Pi hardware. For example, you can create a
connection to a serial device and assign that connection to a handle:

myserial = serialdev(mypi,'/dev/ttyAMA0',9600);

A connection remains active until you clear all of the handles that use the
connection. You cannot create a new connection to a board while the previous
connection to the same board is active. For example, the mypi and myserial
handles from preceding examples both use the same connection. Even if you
clear mypi, the connection remains active while myserial exists. Trying to
create a new connection produces an error.

11-20



Connecting to Raspberry Pi™ Hardware

clear mypi;
mynewpi = raspi;

Error using raspi (line 146)
An active connection to raspberrypi-computername already exists.
You cannot create another connection.

Clearing myserial closes the connection. You can then create a new
connection to the Raspberry Pi hardware without producing an error.

clear myserial;
mynewpi = raspi;

Related
Examples

• “Connect to Raspberry Pi Hardware” on page 11-22
• “Troubleshoot Connecting to Raspberry Pi Hardware” on page 11-25

11-21



11 Install and Use Raspberry Pi™ Hardware

Connect to Raspberry Pi Hardware

In this section...

“Create Connection to One Board” on page 11-22

“Create Connection to a Board That Has Different Settings” on page 11-23

Create Connection to One Board
Use the raspi function to create a connection to Raspberry Pi hardware and
assign the connection to a handle. Later, you can use the handle to interact
with Raspberry Pi hardware and peripherals.

For example, enter:

mypi = raspi

mypi =

raspi with properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

In this example:

• The raspi function uses the IP address, user name, and password from the
most recent connection to the Raspberry Pi hardware.

• The handle, mypi, displays properties from the Raspberry Pi hardware.

11-22



Connect to Raspberry Pi™ Hardware

For more information about using the handle to control and exchanging data
with the Raspberry Pi hardware and peripherals, see:

• “LEDs”

• “GPIO Pins”

• “Serial Port”

• “I2C Interface”

• “SPI Interface”

• “Camera Board”

• “Linux”

Create Connection to a Board That Has Different
Settings
To connect to Raspberry Pi hardware that has a different IP address, user
name, or password from the previous connection, use raspi with arguments.

For example:

myotherpi = raspi('169.254.0.4','rocky','bullwinkle')

myotherpi =

raspi with properties:

DeviceAddress: '169.254.0.4'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

11-23



11 Install and Use Raspberry Pi™ Hardware

Related
Examples

• “Troubleshoot Connecting to Raspberry Pi Hardware” on page 11-25

Concepts • “Connecting to Raspberry Pi Hardware” on page 11-20

11-24



Troubleshoot Connecting to Raspberry Pi™ Hardware

Troubleshoot Connecting to Raspberry Pi Hardware

In this section...

“ Connection Timed Out” on page 11-25

“Host Does Not Exist” on page 11-25

“Active Connection Already Exists” on page 11-26

Connection Timed Out
Creating a connection to Raspberry Pi hardware produces the following error:

mypi = raspi

Error using raspi (line 158)
Cannot establish an SSH connection to the board with device address
"raspberrypi-computername".

Caused by:
Error using raspi.internal.sshclient/executeCommand (line 96)
Error executing command: FATAL ERROR: Network error:
Connection timed out

The MATLAB software cannot reach the Raspberry Pi hardware over the
network connection. To solve this issue:

• Verify the power and network connection on the Raspberry Pi hardware.

• Perform steps described in “Complete Additional Setup Tasks” on page 11-5.

Host Does Not Exist
Creating a connection to Raspberry Pi hardware produces the following error:

Trial>> mypi = raspi

Error using raspi (line 160)
Cannot establish an SSH connection to the board with device address
"raspberrypi-computername".

Caused by:

11-25



11 Install and Use Raspberry Pi™ Hardware

Error using raspi.internal.sshclient/executeCommand (line 96)
Error executing command: Unable to open connection:
Host does not exist

If you have just started the Raspberry Pi hardware, wait two to four minutes.
Then, try creating a connection again.

If the Raspberry Pi hardware has a different IP address from the previous
connection, complete the steps in “Get the IP Address of the Raspberry Pi
Hardware” on page 11-27 and “Create Connection to a Board That Has
Different Settings” on page 11-23.

Active Connection Already Exists
Reconnecting to Raspberry Pi hardware produces the following error.

Trial>> mypi = raspi

Error using raspi (line 146)
An active connection to raspberrypi-computername already exists.
You cannot create another connection.

The MATLAB Workspace contains one or more handles that were created
using the previous connection. The connection is still active.

Clear handles that were created using the previous connection as described in
“Connect to Raspberry Pi Hardware” on page 11-22

Related
Examples

• “Connect to Raspberry Pi Hardware” on page 11-22

Concepts • “Connecting to Raspberry Pi Hardware” on page 11-20

11-26



Get the IP Address of the Raspberry Pi™ Hardware

Get the IP Address of the Raspberry Pi Hardware

In this section...

“Hear the Spoken IP Address” on page 11-27

“Show the IP Address on a Display” on page 11-27

Hear the Spoken IP Address
To hear the IP address of the Raspberry Pi board, plug headphones or
powered speakers into the audio socket on the board.

Restart the board and prepare to keep a record of the IP address.

The board uses a synthesized voice for the IP address. For example, it says:
“My IP address is one hundred and seventy two point two eight point two zero
one point one three seven.”

Show the IP Address on a Display
To display the IP address of the Raspberry Pi hardware, connect a keyboard
and mouse to the USB ports on the board. Connect a monitor or TV to either
the HDMI output or the S-video output on the board.

After starting the Raspberry Pi hardware, open the start menu on the
Raspian Wheezy desktop. Select Accessories > LXTerminal.

The terminal displays the host name that Support Package Installer assigned
to the Raspberry Pi hardware during the setup process. For example,
raspberrypi-computername in the following illustration.

At the command prompt, enter ifconfig. The inet parameter on the second
line displays the IP address of the board.

With the raspi function, you can use either the IP address or the host name
as the ipaddress argument.

11-27



11 Install and Use Raspberry Pi™ Hardware

11-28



The Raspberry Pi™ LED

The Raspberry Pi LED
The Raspberry Pi hardware has one user-controllable LED. You can program
this LED to function as a visual indicator that responds to an input or
condition.

The labeling, location, and name of the LED varies by model and version. To
locate and identify the LED, use the showLEDs function or the AvailableLEDs
property.

11-29



11 Install and Use Raspberry Pi™ Hardware

To return the LED to its normal purpose as an indicator of SD card activity,
restart the Raspberry Pi hardware.

For more information, see “LEDs”.

11-30



Turn the Raspberry Pi™ LED On and Off

Turn the Raspberry Pi LED On and Off
This example shows how to turn the on-board LED on and off.

Create a connection to the Raspberry Pi board and assign the connection to
a handle, mypi.

mypi = raspi

mypi =

raspi with properties:

DeviceAddress: 'raspberrypi-computername'
Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'
AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 14 15 17 18 22 23 24 25 27 30 31]
AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}
I2CBusSpeed: 100000

Supported peripherals

The AvailableLEDs property shows the name of the user-controllable LED.

To show the location of the user-controllable LED on the board, use showLEDs.

showLEDs(mypi)

11-31



11 Install and Use Raspberry Pi™ Hardware

Turn the specified LED on by setting its value to 1 or true.

writeLED(mypi,'led0',1)

Turn the LED off by setting its value to 0 or false.

writeLED(mypi,'led0',false)

11-32



Turn the Raspberry Pi™ LED On and Off

To restore the LED to its default purpose, which is to indicate SD card
activity, restart the Raspberry Pi hardware.

11-33



11 Install and Use Raspberry Pi™ Hardware

Flash the Raspberry Pi LED in Response to an Input
This example shows how to flash the on-board LED when you press a button
that is connected to a GPIO pin.

Excessive voltage and current can damage the Raspberry Pi hardware.
Observe the manufacturer’s precautions for handling the Raspberry Pi
hardware and connecting it to other devices. For more information, see
http://www.raspberrypi.org/technical-help-and-resource-documents.

Using a breadboard, set up the following circuit:

• Connect one of the +3.3V pins on the GPIO header to a button.

• Connect pin 23 on the GPIO header to a 220 or 330 Ohm resistor.

• Connect the unconnected ends of the button and resistor to each other.

Note Use showLEDs to show an illustration that identifies each pin.

Run the code and press the button. The button closes the circuit between the
+3.3V pin and pin 23. When readDigitalPin detects the raised voltage,
if buttonPressed becomes true, and writeLED toggles the LED on and
off ten times.

for ii = 1:100
buttonPressed = readDigitalPin(mypi,23);
if buttonPressed

for jj = 1:10
writeLED(mypi,'led0',1);
pause(0.05);
writeLED(mypi,'led0',0);
pause(0.05);

end
end
pause(0.1);

end

11-34

http://www.raspberrypi.org/technical-help-and-resource-documents


The Raspberry Pi™ GPIO Pins

The Raspberry Pi GPIO Pins
The Raspberry Pi hardware shares digital pins between the GPIO, Serial,
SPI, and I2C interfaces. Enabling or disabling the SPI and I2C interfaces
changes the availability of specific pins for use as GPIO pins.

For example, with Raspberry Pi, Model B, Rev 2:

• The SPI interface is disabled by default. Enabling the SPI interface uses
pins 7, 8, 9, 10, and 11.

• The I2C interface is enabled by default. Disabling the I2C interface frees
pins 2, 3, 28, and 29.

• With both interfaces disabled, the available digital pins are: 2, 3, 4, 7, 8, 9,
10, 11, 14, 15, 17, 18, 22, 23, 24, 25, 27, 28, 29, 30, 31.

You can configure a GPIO pin as an input or output. If a pin is unconfigured,
reading from the pin configures it as an input, and writing to the pin
configures it as an output.

When you write 1 to a GPIO pin, the pin outputs +3.3V. When you write 0 to
the pin, or do nothing, the pin is grounded, and outputs 0V.

When you read the GPIO pin, Raspberry Pi hardware detects the voltage of
the pin. If the input voltage has approximately the same voltage as ground,
around 0V, the logical value of the pin is 0. If the input voltage is higher,
approximately +3.3V, the logical value of the pin is 1.

To change a pin that has already been configured, you must use
configureDigitalPin. The Raspberry Pi hardware requires this extra
step to help prevent accidental damage to the board and other components.
Otherwise, for example, you could burn out an input pin that is connected to
ground by writing to it.

11-35



11 Install and Use Raspberry Pi™ Hardware

Use the Raspberry Pi GPIO Pins as Digital Inputs and
Outputs

This example shows how to use the digital pins on the Raspberry Pi hardware
as digital inputs and outputs.

Excessive voltage and current can damage the Raspberry Pi hardware.
Observe the manufacturer’s precautions for handling the Raspberry Pi
hardware and connecting it to other devices. For more information, see
http://www.raspberrypi.org/technical-help-and-resource-documents.

When you create a connection to the Raspberry Pi hardware, the
AvailableDigitalPins property shows the list of digital pins that are
available.

mypi = raspi

mypi =

raspi with properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

The Raspberry Pi hardware shares some digital pins with the SPI and I2C
interfaces. Enabling or disabling those interfaces changes the number of
available pins.

To review the list of digital pins are available, use the AvailableDigitalPins
property.

mypi.AvailableDigitalPins

11-36

http://www.raspberrypi.org/technical-help-and-resource-documents


Use the Raspberry Pi™ GPIO Pins as Digital Inputs and Outputs

ans =

Columns 1 through 13

4 7 8 9 10 11 14 15 17 18 22 23 24

Columns 14 through 17

25 27 30 31

To show a pin diagram for the specific model of the Raspberry Pi hardware
that you are using, use showPins.

showPins(mypi)

11-37



11 Install and Use Raspberry Pi™ Hardware

To configure a pin as a digital input, pass an input value to
configureDigitalPin.

configureDigitalPin(mypi,4,'input')

This example configures pin 4 as an input.

11-38



Use the Raspberry Pi™ GPIO Pins as Digital Inputs and Outputs

To read the value of a digital pin, use readDigitalPin.

readDigitalPin(mypi,4)

ans =

1

This example shows that a wire connected to pin 4 has an elevated voltage,
which produces a logical value of 1 (true). If the wire has no voltage, the
logical value of pin 4 is 0 (false).

To configure a pin as a digital output, pass an output value to
configureDigitalPin.

configureDigitalPin(mypi,7,'output')

To write a logical value to a digital pin, use writeDigitalPin.

writeDigitalPin(mypi,7,1)

This example writes a logical value of 1 to pin 7.

11-39



11 Install and Use Raspberry Pi™ Hardware

Troubleshoot Raspberry Pi GPIO Pins

In this section...

“Error Using raspi/writeDigitalPin” on page 11-40

“Error Using raspi/readDigitalPin” on page 11-40

“Unexpected Digital Pin Number” on page 11-41

Error Using raspi/writeDigitalPin
Writing a logical value to a pin produces the following error:

writeDigitalPin(mypi,7,1)

Trial>> writeDigitalPin(mypi,4,1)
Error using raspi/writeDigitalPin (line 451)
Digital pin 4 was previously configured for input.
Set the digital pin configuration to 'output' in order to write to it.

The pin is configured as an input. To solve this issue:

• Use a different pin number.

• Use configureDigitalPin to reconfigure the pin as an output.

For more information, see “Use the Raspberry Pi GPIO Pins as Digital Inputs
and Outputs” on page 11-36.

Error Using raspi/readDigitalPin
Reading the logical value of a pin produces an error.

readDigitalPin(mypi,4)

Error using raspi/readDigitalPin (line 433)
Digital pin 4 was previously configured for output. Set the digital pin
configuration to 'input' in order to read from it.

The pin is configured as an output.

11-40



Troubleshoot Raspberry Pi™ GPIO Pins

To solve this issue, do either of the following:

• Use a different pin number.

• Use configureDigitalPin to reconfigure the pin as an input.

For more information, see “Use the Raspberry Pi GPIO Pins as Digital Inputs
and Outputs” on page 11-36.

Unexpected Digital Pin Number
Using a specific pin number produces an error.

writeDigitalPin(mypi,7,1)

writeDigitalPin(mypi,7,1)
Error using raspi/checkDigitalPin (line 688)
Unexpected digital pin number.
Use AvailableDigitalPins property for a list of digital
pin numbers you can use.

Error in raspi/writeDigitalPin (line 444)
obj.checkDigitalPin(pinNumber);

The pin is unavailable for use as a digital pin. The I2C interface or the SPI
interface might be using the pin.

To solve this issue, do either of the following:

• Use the AvailableDigitalPins property to identify which pins are
available, and then use a different pin number.

• Disable the I2C or SPI interface that is using the pin. For more information,
see disableSPI and disableI2C.

For more information, see “Use the Raspberry Pi GPIO Pins as Digital Inputs
and Outputs” on page 11-36.

11-41



11 Install and Use Raspberry Pi™ Hardware

The Raspberry Pi Serial Port
The Raspberry Pi serial port provides low speed +3.3V TTL RS-232 data
communication with a wide variety of devices, such as sensors, displays,
ADCs, and DACs. The serial port UART connects to two pins on the GPIO
header:

• GPIO 14 (UART0_TXD) transmits data to the RxD pin on the peripheral
device.

• GPIO 15 (UART0_RXD) receives data from the TxD pin on the peripheral
device.

By default, the serial console in the customized version of Raspian Wheezy
on your Raspberry Pi hardware is disabled. To use the serialdev, the serial
console must be disabled.

For more information, see:

• “Serial Port”

• http://en.wikipedia.org/wiki/Serial_port

Do not connect the Raspberry Pi serial port to 12V RS-232 serial ports, which
are found on many older computers.

11-42

http://en.wikipedia.org/wiki/Serial_port


Use the Raspberry Pi™ Serial Port to Connect to a Device

Use the Raspberry Pi Serial Port to Connect to a Device
This example shows how to create a connection to a serial device, write data
to the device, and read data from the device.

By default, the serial console in the customized version of Raspian Wheezy
on your Raspberry Pi hardware is disabled. To use the serialdev, the serial
console must be disabled.

Excessive voltage and current can damage the Raspberry Pi hardware.
Observe the manufacturer’s precautions for handling the Raspberry Pi
hardware and connecting it to other devices. For more information, see
http://www.raspberrypi.org/technical-help-and-resource-documents.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Show the location of the Tx and Rx pins, GPIO 14 (UART0_TXD) and GPIO 15
(UART0_RXD), on the GPIO header.

showPins(mypi)

11-43

http://www.raspberrypi.org/technical-help-and-resource-documents


11 Install and Use Raspberry Pi™ Hardware

Raspberry Pi hardware uses +3.3V. Do not connect Raspberry Pi hardware
directly to devices that use higher voltages.

Connect the Raspberry Pi board to a +3.3V serial device.

• To receive data, connect the GPIO 15 (UART0_RXD) pin on the Raspberry Pi
board to the TxD pin on the serial device.

11-44



Use the Raspberry Pi™ Serial Port to Connect to a Device

• To transmit data, connect the GPIO 14 (UART0_TXD) pin on the Raspberry
Pi board to the RxD pin on the serial device.

• Connect a ground pin, GND, on the Raspberry Pi board to the GND pin on
the serial device.

• Connect a +3.3V pin on the Raspberry Pi board to the VCC pin on the serial
device.

You can check the status of the serial console.

system(mypi, 'rpi-serial-console status')

ans =

Serial console on /dev/ttyAMA0 is enabled

By default, the serial console is enabled in the custom version of Raspian
Wheezy on the Raspberry Pi hardware.

If the serial console is enabled, and you want to use serialdev, disable the
console and reboot the Raspberry Pi hardware.

system(mypi, 'sudo rpi-serial-console disable');
system(mypi, 'sudo shutdown -r now');
clear mypi;

When the Raspberry Pi hardware finishes rebooting, you can use serialdev
to exchange data with serial devices.

Before continuing, research the manufacturer’s product information to
determine which baud rate, data bits, parity, and stop bit settings the serial
device supports.

Use serialdev to create a connection to the serial device and assign the
connection to a handle.

myserialdevice = serialdev(mypi,'/dev/ttyAMA0')

myserialdevice =

serialdev with properties:

11-45



11 Install and Use Raspberry Pi™ Hardware

BaudRate: 115200
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 10

In this example, the connection uses the default values for baud rate (115200),
data bits (8), parity ('none'), and stop bit (1).

If the serial device requires nondefault values, use a set of optional arguments
to override those defaults.

myserialdevice = serialdev(mypi,'/dev/ttyAMA0',115200,8,'none',2)

myserialdevice =

serialdev with properties:

BaudRate: 115200
DataBits: 8

Parity: 'none'
StopBits: 2
Timeout: 10

This example overrides the default value of StopBits by setting it to 2. It uses
the other arguments to maintain the correct sequence of arguments to the
left of the rightmost overriding value.

You can write a values the serial device.

write(myserialdevice,[10 12],'uint16')

This example writes two values to the serial device. It overrides the default
precision, uint8, by setting it to uint16.

You can also read an array of values from the serial port.

output = read(myserialdevice,100);

11-46



Use the Raspberry Pi™ Serial Port to Connect to a Device

This example reads a 100-element array of uint8 values from the serial
device.

If the serial connection times out during read operations, you can adjust the
time out period by assigning a new value to the Timeout property.

myserialdevice.Timeout = 20

myserialdevice =

serialdev with properties:

BaudRate: 115200
DataBits: 8

Parity: 'none'
StopBits: 1
Timeout: 20

To use the serial console, enable the serial console and reboot the Raspberry
Pi hardware.

system(mypi, 'sudo rpi-serial-console enable');
system(mypi, 'sudo shutdown -r now');
clear mypi;

When the Raspberry Pi hardware finishes rebooting, you can communicate
with the Linux command interface over a USB to TTL serial cable that is
connected to the serial pins on the GPIO header. However, you cannot use
serialdev until you disable the console.

11-47



11 Install and Use Raspberry Pi™ Hardware

Troubleshoot the Raspberry Pi Serial Port

Missing or Garbled Data
When you try to exchange data with the serial device, the data is garbled or
missing.

write(myserialdevice,[10 12],'uint16')

Creating a connection and writing data to a serial device does not provide
any indication of success or failure.

The device is not connected to the Raspberry Pi serial port. Or, the connection
to the serial device is not configured correctly.

To solve this issue, do the following:

• Verify the physical connection between the Rx and Tx pins and their
counterparts on the serial device.

• Verify the serial port settings that the serial device requires. Clear the
handle for the current serial connection. Create a new connection that
uses the correct serial port settings.

• Verify the data precision that the serial device requires. Write data using
the correct serial port settings.

11-48



The Raspberry Pi™ I2C Interface

The Raspberry Pi I2C Interface
Inter-Integrated Circuit (I2C) is a protocol for communicating with low-speed
peripherals.

Depending on the model and revision of your board, Raspberry Pi hardware
has one or two I2C buses. Each bus has an I2C Master connected to two
bidirectional lines, serial data line (SDA), and serial clock (SCL). These two
lines are connected to a pair of pins, such as I2C1_SDA (GPIO2) and I2C1_SCL
(GPIO3), on the GPIO header.

You can connect multiple I2C devices, such ADCs, LCDs, and sensors, to the
I2C pins on the Raspberry Pi hardware. Each I2C device on an I2C bus must
have a unique address. Most devices have a default address that is assigned
by the manufacturer. If the address is not unique, follow the manufacturer’s
instructions for reconfiguring the address. Often, you can reconfigure the
address using a pair of jumpers on the device. The Raspberry Pi hardware
supports only 7-bit addresses. This 7-bit address space supports 128 unique
addresses.

The I2C pins on the Raspberry Pi hardware are pulled up with 1.8 kOhm
resistors. The I2C devices must support +3.3V and not draw more current
than the Raspberry Pi’s maximum.

11-49



11 Install and Use Raspberry Pi™ Hardware

Use the Raspberry Pi I2C Interface to Connect to a Device
This example shows how to create a connection to an I2C device, write data to
the device, and read data from the device.

Excessive voltage and current can damage the Raspberry Pi hardware.
Observe the manufacturer’s precautions for handling the Raspberry Pi
hardware and connecting it to other devices. For more information, see
http://www.raspberrypi.org/technical-help-and-resource-documents.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

raspi with properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

The default I2C bus speed is 100000 bits per second.

You can redisplay the AvailableI2CBuses and I2CBusSpeed properties.

mypi.AvailableI2CBuses
mypi.I2CBusSpeed

ans =

'i2c-0' 'i2c-1'

11-50

http://www.raspberrypi.org/technical-help-and-resource-documents


Use the Raspberry Pi™ I2C Interface to Connect to a Device

ans =

100000

Show the location of the I2C pins on the GPIO header.

showPins(mypi)

11-51



11 Install and Use Raspberry Pi™ Hardware

The pin map shows that, for this model and revision of the board, the i2c-1
bus is available on the GPIO header pins I2C1_SDA (GPIO 2) and I2C1_SCL
(GPIO 3).

Raspberry Pi hardware uses +3.3V. Do not connect Raspberry Pi hardware
directly to devices that deliver higher voltages.

Before continuing, research the manufacturer’s product information to
determine which settings the I2C device supports. Then, connect the
Raspberry Pi board to the I2C device.

For example, with the MCP4725 12-bit DAC, connect:

• I2C1_SDA (GPIO2) pin on the Raspberry Pi board to the SDA pin on the
DAC.

• I2C1_SCL (GPIO3) pin on the Raspberry Pi board to the SCL pin on the
DAC.

• GND on the Raspberry Pi board to the GND pin on the DAC.

• +3.3V on the Raspberry Pi board to the VDD pin on the DAC.

• VOUT pin on the DAC to the positive lead on the voltmeter.

• GND to the negative lead on the voltmeter.

Get the addresses of I2C devices that are attached to the I2C bus, 'i2c-1'.

scanI2CBus(mypi,'i2c-1')

ans =

'0x62'

Create a connection to the I2C DAC at '0x62' and assign that connection
to a handle, i2cdac.

i2cdac = i2cdev(mypi,'i2c-1','0x62')

i2cdac =

i2cdev with properties:

11-52



Use the Raspberry Pi™ I2C Interface to Connect to a Device

Bus: 'i2c-1'
Address: '0x62'

To write a value to the I2C device.

write(i2cdac,4092);

To read a value from an I2C sensor, physically connect the sensor, use
scanI2CBus to get the address, use i2cdev to create a connection to the
device. Then, use read to get the value.

addr = scanI2CBus(mypi,'i2c-1');
i2csensor = i2cdev(mypi,'i2c-1',char(addr));
read(i2csensor,1)

If you are not using I2C, disable I2C to make additional GPIO pins available.

disableI2C(mypi)

When you use I2C again, enable I2C.

enableI2C(mypi)

To change the I2C bus speed, mypi.I2CBusSpeed, use enableI2C with the
i2cBusSpeed argument.

disableI2C(mypi);
enableI2C(mypi,400000);
mypi.I2CBusSpeed

ans =

40000

11-53



11 Install and Use Raspberry Pi™ Hardware

Troubleshoot the Raspberry Pi I2C Interface
Trying to create a connection with an I2C device produces an error:

addr = scanI2CBus(mypi,'i2c-1');
i2csensor = i2cdev(mypi,'i2c-1',char(addr));

Error using raspi.internal.i2cdev (line 67)
An active connection to I2C device at address 0x62 already exists.
You cannot create another connection.

Error in raspi/i2cdev (line 507)
i2cObj = raspi.internal.i2cdev(obj, varargin{:});

Another connection to the device at that address exists. Create a connection
to a device that has a different address, or clear the handle for the current
connection.

11-54



The Raspberry Pi™ SPI Interface

The Raspberry Pi SPI Interface
Serial Peripheral Interface (SPI) is a full-duplex serial protocol for
communicating with high-speed peripherals.

The SPI Master on Raspberry Pi hardware can drive two SPI peripheral
device. The SPI Master has four pins:

• GPIO 11 (SPI0_SCLK) outputs a serial clock signal to synchronize
communications.

• GPIO 10 (SPI0_MOSI) outputs data to the SPI peripheral device.

• GPIO 9 (SPI0_MISO) receives data from the SPI peripheral device.

• GPIO 8 (SPI0_CE0) enables one SPI peripheral device.

• GPIO 7 (SPI0_CE1) enables the other SPI peripheral device.

11-55



11 Install and Use Raspberry Pi™ Hardware

You can connect two SPI devices, such as displays, sensors, and flash storage
to the SPI pins on the Raspberry Pi hardware. Connect both devices to the
SCLK, MOSI, and MISO pins. Connect each device to one of the CE pins.

SPI on Raspberry Pi hardware supports:

• Modes 0, 1, 2 or 3

• 8 bits per word

• Data speeds: 500000, 1000000, 2000000, 4000000, 8000000, 16000000,
32000000

For more information, see:

• “SPI Interface”

• http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

11-56

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus


Use the Raspberry Pi™ SPI Interface to Connect to a Device

Use the Raspberry Pi SPI Interface to Connect to a Device
This example shows how to exchange data with an SPI device.

Excessive voltage and current can damage the Raspberry Pi hardware.
Observe the manufacturer’s precautions for handling the Raspberry Pi
hardware and connecting it to other devices. For more information, see
http://www.raspberrypi.org/technical-help-and-resource-documents.

Create a connection to the Raspberry Pi board.

mypi = raspi

mypi =

raspi with properties:

DeviceAddress: 'raspberrypi-computername'

Port: 18725

BoardName: 'Raspberry Pi Model B Rev 2'

AvailableLEDs: {'led0'}

AvailableDigitalPins: [4 7 8 9 10 11 14 15 17 18 22 23 24 25 27 30 31]

AvailableSPIChannels: {}

AvailableI2CBuses: {'i2c-0' 'i2c-1'}

I2CBusSpeed: 100000

Supported peripherals

By default, SPI is disabled, so AvailableSPIChannels does not show any
channels.

Enable SPI and get the channels.

enableSPI(mypi);
mypi.AvailableSPIChannels

ans =

'CE0' 'CE1'

11-57

http://www.raspberrypi.org/technical-help-and-resource-documents


11 Install and Use Raspberry Pi™ Hardware

Show the location of the SPI pins, such as GPIO 10 (SPI0_MOSI), GPIO 9
(SPI0_MISO), and GPIO 11 (SPI0_SCLK) in the following illustration.

showPins(mypi)

Before continuing, research the manufacturer’s product information to
determine which settings the SPI device supports.

11-58



Use the Raspberry Pi™ SPI Interface to Connect to a Device

Physically connect the Raspberry Pi hardware to one or two SPI devices.
Connect the SCLK, MOSI, and MISO pins to their counterparts on the SPI
devices. Connect the CE0 pin on Raspberry Pi hardware to the CE pin on one
SPI device. Connect the CE1 pin on Raspberry Pi hardware to the CE pin
on other SPI device.

Create a connection to one of the SPI devices.

myspidevice = spidev(mypi,'CE1')

myspidevice =
spidev with properties:

Channel: 'CE1'
Mode: 0

BitsPerWord: 8
Speed: 500000

11-59



11 Install and Use Raspberry Pi™ Hardware

The SPI device determines the data speed. Raspberry Pi hardware supports
speeds from 0.5 MHz to 32 MHz (myspidevice.Speed from 500000 to
32000000)

SPI is full duplex. Perform read or write operations concurrently using
writeRead. To read data from SPI, send dummy values. To write data to SPI,
discard the data it returns.

out = writeRead(myspidevice,[hex2dec('08') hex2dec('D4')])

out =
7 211

If you are not using SPI, disable SPI to make additional GPIO pins available.

disableSPI(mypi)

11-60



The Raspberry Pi™ Camera Board

The Raspberry Pi Camera Board
The Camera Board is an add-on device for capturing still images and video on
the Raspberry Pi hardware.

The Camera Board provides many configurable settings such as exposure
compensation, orientation, region of interest (ROI), and special effects.

Follow the manufacturer’s instructions for connecting the Camera Board to
the CSI connector on the Raspberry Pi hardware.

11-61



11 Install and Use Raspberry Pi™ Hardware

11-62



Use the Raspberry Pi™ Camera Board to Capture Images and Video

Use the Raspberry Pi Camera Board to Capture Images
and Video

This example shows how to create a connection to the Camera Board, capture
still images, and record video.

Create a connection to the Raspberry Pi board.

mypi = raspi;

Create a connection to the Camera Board and assign the connection to a
handle, mycam. You can use Name-Value pairs to override the default values
of most properties, like the Resolution property, shown here.

mycam = cameraboard(mypi,'Resolution','1280x720')

mycam =

cameraboard with properties:

Name: Camera Board

Re '1280x720' (View available resolutions)

Rotation: 0 (0, 90, 180 or 270)

HorizontalFlip: 0

VerticalFlip: 0

FrameRate: 30 (2 to 30)

Recording: 0

Quality

Brightness: 50 (0 to 100)

Contrast: 0 (-100 to 100)

Saturation: 0 (-100 to 100)

Sharpness: 0 (-100 to 100)

Exposure and AWB

ExposureMode: 'auto' (View available exposure modes)

ExposureCompensation: 0 (-10 to 10)

AWBMode: 'auto' (View available AWB modes)

MeteringMode: 'average' (View available metering modes)

11-63



11 Install and Use Raspberry Pi™ Hardware

Effects

ImageEffect: 'none' (View available image effects)

VideoStabilization: 'off'

ROI: [0.00 0.00 1.00 1.00] (0.0 to 1.0 [top, left, width, height])

Import and display a sequence of ten snapshots on your host computer.

for ii = 1:10
img = snapshot(mycam);

imagesc(img);
drawnow;

end

If the image is upside down, change the orientation of the image.

mycam.Rotation = 180;

You can change the values of many mycamera properties listed in the
"Name-Value Pair Arguments" for cameraboard.

Record a 10 second video.

record(mycam,'myvideo.mp4',10)

Before the specified number of seconds have elapsed, you can stop recording
video.

stop(mycam)

Copy the video from the board to your host computer.

getFile(mypi,'myvideo.mp4','C:\MATLAB')

To free up space, delete the video from the board.

deleteFile(mypi,'myvideo.mp4')

11-64



Troubleshoot the Raspberry Pi™ Camera Board

Troubleshoot the Raspberry Pi Camera Board
If you have trouble using the Camera Board:

• Verify the physical connection between the Camera Board’s ribbon cable
and the CSI connector.

• Use getFile to transfer .mp4 video and .jpg image files to your host
computer. Then use deleteFile to permanently remove those same files
from the memory on the Raspberry Pi hardware.

• Use clear to remove the current handles. Then use raspi and
cameraboard to create a new connection to the Camera Board.

11-65



11 Install and Use Raspberry Pi™ Hardware

The Raspberry Pi Linux Command Interface
You can access the Linux command interface on the Raspberry Pi hardware.
The system function runs Linux commands on the Raspberry Pi hardware.
The openShell function opens a terminal window on the host computer
that is connected to the Linux command-line interface on the Raspberry Pi
hardware. Both functions use SSH encryption.

For more information, see:

• “Linux”.

• http://en.wikipedia.org/wiki/Secure_Shell

• http://elinux.org/CLI_Spells

• http://linuxcommand.org/learning_the_shell.php

11-66

http://en.wikipedia.org/wiki/Secure_Shell
http://elinux.org/CLI_Spells
http://linuxcommand.org/learning_the_shell.php


Run Linux® Commands on Raspberry Pi™ Hardware

Run Linux Commands on Raspberry Pi Hardware
Use the system function to run Linux commands on the Raspberry Pi
hardware. Pass commands, such as 'ls -al', as the second argument. The
function returns standard output from the Linux command line.

system(mypi,'ls -al')

ans =

total 100
drwxr-xr-x 10 pi pi 4096 Nov 22 14:18 .
drwxr-xr-x 3 root root 4096 Sep 25 16:22 ..
-rw------- 1 pi pi 21712 Nov 13 17:40 .bash_history
-rw-r--r-- 1 pi pi 220 Sep 25 16:22 .bash_logout
-rw-r--r-- 1 pi pi 3243 Sep 25 16:22 .bashrc
drwxr-xr-x 4 pi pi 4096 Oct 1 18:17 .cache
drwxr-xr-x 6 pi pi 4096 Oct 2 12:01 .config
drwx------ 3 pi pi 4096 Oct 1 18:17 .dbus
drwxr-xr-x 2 pi pi 4096 Nov 13 17:30 Desktop
-rw-r--r-- 1 pi pi 35 Nov 13 17:41 .dmrc
drwx------ 2 pi pi 4096 Oct 1 18:17 .gvfs
drwxr-xr-x 3 pi pi 4096 Oct 2 14:46 MATLAB
-rw-r--r-- 1 pi pi 5781 Feb 3 2013 ocr_pi.png
-rw-r--r-- 1 pi pi 675 Sep 25 16:22 .profile
drwxrwxr-x 2 pi pi 4096 Mar 10 2013 python_games
drwxr-xr-x 8 pi pi 4096 Oct 2 12:41 wiringPi
-rw------- 1 pi pi 66 Nov 13 17:41 .Xauthority
-rw------- 1 pi pi 261 Nov 13 17:41 .xsession-errors
-rw------- 1 pi pi 449 Nov 13 17:40 .xsession-errors.old

Use the openShell function to open an SSH terminal that is connected to the
Linux command-line interface on the Raspberry Pi hardware. Log in as the
pi user. The default password for pi is raspberry.

mypi = raspi()
openShell(mypi)

11-67



11 Install and Use Raspberry Pi™ Hardware

It is a good security practice to change the default password. Use the SSH
terminal window to run the raspi-config utility.

sudo raspi-config

Select 2 Change User Password and change the password.

11-68



Run Linux® Commands on Raspberry Pi™ Hardware

After changing the password, clear the mypi handle and any handles that
you created using mypi. Then, use raspi to create a new connection based
on the new password.

clear mypi
mypi = raspi('172.28.201.137','pi','newpassword')

For more information, see “Linux”.

11-69



11 Install and Use Raspberry Pi™ Hardware

Troubleshoot Running Linux Commands on Raspberry Pi
Hardware

You changed the pi user’s password, and now the system function does not
work. The current mypi handle uses the old password. To regain control of
the MATLAB Command Window, press Ctrl+C. Clear the mypi handle and
any other handle based on the old password. Create a new connection using
raspi with the arguments that specify the new password. Use the system
function again.

For more information, see: “Linux”.

11-70



Management of Raspberry Pi™ Files

Management of Raspberry Pi Files
You can manage files on the Raspberry Pi hardware. The getFile function
downloads files from the Raspberry Pi hardware. The putFile function
uploads files to the Raspberry Pi hardware. The deleteFile function deletes
files on the Raspberry Pi hardware. All of these functions:

• Use SCP and SSH protocols, which provide encrypted communications.

• Use the current folder in MATLAB as the default file location in on the
host computer.

• Use the present working directory (pwd) as the default file location on
the Raspberry Pi hardware.

• Accept absolute or relative paths to specify nondefault file locations.

• Let you specify the destination file name.

For more information, see:

• “Linux”.

• http://en.wikipedia.org/wiki/Secure_Shell

• http://en.wikipedia.org/wiki/Secure_copy

11-71

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_copy


11 Install and Use Raspberry Pi™ Hardware

Manage Raspberry Pi Files
You can download files from, upload files to, and delete files from the
Raspberry Pi hardware.

To download a file from the Raspberry Pi hardware to your host computer,
use the getFile function. Use the second argument to specify the path and
name of the file.

system(mypi,'ls')
getFile(mypi,'/home/pi/.profile')

By default, getFile saves the file to the current folder in MATLAB. You can
use a third argument to specify a download folder on your host computer.

getFile(mypi,'/home/pi/.profile','C:\Users\myusername\Desktop')

To upload a file to the Raspberry Pi hardware, use the putFile function.

putFile(mypi,'C:\Users\myusername\Desktop\.profile','/home/pi/')

If you use the Camera Board to record video, download the video file. Then,
delete the file from the Raspberry Pi hardware.

getFile(mypi,'myvideo.mp4','C:\MATLAB');
deletFile(mypi,'myvideo.mp4')

For more information, see “Linux”.

11-72



Troubleshoot Managing Raspberry Pi™ Files

Troubleshoot Managing Raspberry Pi Files
You changed the pi user’s password, and now the getFile, putFile, and
deleteFile functions do not work. The current mypi handle uses the old
password. To regain control of the MATLAB Command Window, press
Ctrl+C. Clear the mypi handle and any other handle based on the old
password. Create a new connection using raspi with arguments that specify
the new password. Use the getFile, putFile, or deleteFile function again.

For more information, see: “Linux”.

11-73



11 Install and Use Raspberry Pi™ Hardware

11-74



12

Webcam Support in
MATLAB

• “Webcam Acquisition Overview” on page 12-2

• “Connecting to Webcams” on page 12-4

• “Acquiring Images from Webcams” on page 12-6

• “Setting Properties for Webcam Acquisition” on page 12-17

• “Installing the Webcam Support Package” on page 12-22



12 Webcam Support in MATLAB

Webcam Acquisition Overview

In this section...

“Webcam Support” on page 12-2

“Supported Platforms” on page 12-3

Webcam Support
You can use MATLAB Webcam support to bring live images from any USB
Video Class (UVC) compliant Webcam into MATLAB. This includes Webcams
that may be built into laptops or other devices, as well as Webcams that plug
into your computer via a USB port.

Using simple MATLAB functions, you can detect connected Webcams,
acquire individual snapshots from a Webcam, and optionally set up a loop for
acquiring images. The webcamlist function allows you to detect the connected
Webcams. The webcam function creates the Webcam object that is used to
acquire images. And the snapshot function returns a single image from the
camera. You can also preview your image and set properties for the image.

For more information, see

• “Connecting to Webcams” on page 12-4 for how to use the webcamlist
function to detect your cameras

• “Acquiring Images from Webcams” on page 12-6 for how to acquire live
images from your camera into MATLAB

• “Setting Properties for Webcam Acquisition” on page 12-17 for how to set
Webcam-specific or camera-specific properties for the acquisition

Note Webcam support is available only through Hardware Support
Packages. You must download and install the necessary files using the
Support Package Installer. For instructions, see “Installing the Webcam
Support Package” on page 12-22.

12-2



Webcam Acquisition Overview

Supported Platforms
The MATLAB Webcam support can be used on the following platforms:

• Microsoft Windows 32-bit and 64-bit (Windows 7 or later)

• Mac OS X 64-bit

• Linux

12-3



12 Webcam Support in MATLAB

Connecting to Webcams
Use the webcamlist function to return the list of available UVC-compliant
Webcams connected to your system. The function returns a cell array of
camera names. The list supports the plug and play scenario, where using the
webcamlist function again in the same MATLAB session returns an updated
list of cameras if you plug in different cameras during the session.

If you have a single Webcam connected to your system, the output shows
one camera:

webcamlist

ans =

'Logitech USB Camera'

If you have multiple Webcams connected to your system, the output shows all
the cameras in a cell array:

webcamlist

ans =

'Dell Camera C250'
'Logitech USB Camera'

In this case webcamlist detects the built-in Webcam in the Dell® computer,
and a connected USB Webcam.

If you have two cameras connected by USB ports, the output is:

webcamlist

ans =

'Logitech Webcam 250'
'Logitech Webcam Pro 9000'

12-4



Connecting to Webcams

The name of the camera that is shown in this output, for example 'Logitech
Webcam 250', is the name you can use to create the Webcam object in order to
acquire images.

For more information, see:

• “Acquiring Images from Webcams” on page 12-6 for how to acquire live
images from your camera into MATLAB

• “Setting Properties for Webcam Acquisition” on page 12-17 for how to set
object-specific or device-specific properties for the acquisition

Note Webcam support is available only through Hardware Support
Packages. You must download and install the necessary files using the
Support Package Installer. For instructions, see “Installing the Webcam
Support Package” on page 12-22.

12-5



12 Webcam Support in MATLAB

Acquiring Images from Webcams

In this section...

“Creating a Webcam Object” on page 12-6

“Acquiring Webcam Images” on page 12-10

“Acquiring Webcam Images in a Loop” on page 12-14

“Supported Functions for Webcam” on page 12-16

Creating a Webcam Object
Use the webcam function to create a Webcam object. You can use it in one of
three ways:

Connect to the first or only camera, by using no input arguments
Specify a camera by name, by using the Webcam name (as a string) as an
input argument
Specify a camera by the list order, by using an index number as the input
argument

Note Webcam support is available only through a Hardware Support
Package. You must download and install the necessary files using the Support
Package Installer. For instructions, see “Installing the Webcam Support
Package” on page 12-22.

Find the name of your camera by using the webcamlist function. Run
webcamlist first to make sure that MATLAB can discover your camera(s). In
this example, it discovers the built-in Webcam in the Dell computer, and a
connected Logitech® Webcam.

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

12-6



Acquiring Images from Webcams

No Input Argument

If you use the webcam function with no input argument, it creates the object
and connects to the first camera returned by webcamlist. This will be the
first camera shown on the list if you have multiple cameras. If you only have
one camera connected to your system, it will use that one. So in the example
shown above, it will create the object using the Logitech camera, since that
appears in the webcamlist output first.

12-7



12 Webcam Support in MATLAB

% Use cam as the name of the object.

cam = webcam

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

You can see that it created the object and connected to the Logitech Webcam.

Index as Input Argument

If you use the webcam function with an index as the input argument, it creates
the object corresponding to that index and connects to that camera. The index
corresponds to the order of cameras in the cell array returned by webcamlist
when you have multiple cameras connected. So in the example shown above,
device 1 is the Logitech camera and device 2 is the built-in Dell Webcam.

% Use cam as the name of the object. Use 2 to connect to the Dell camera.

cam = webcam(2)

cam =

webcam with properties:

Name: 'Dell Camera C250'

12-8



Acquiring Images from Webcams

Resolution: '320x240'
AvailableResolutions: ('320x240' '160x120' '80x60')

Brightness: 128
Contrast: 32

Gain: 0

You can see that it created the object and connected to the Dell Webcam. If
you only have one camera, you do not need to use the index. You can use the
webcam function with no input argument and it creates the object with the
single camera that is connected. The index is useful when you have multiple
cameras.

Camera Name as Input Argument

If you use the webcam function with the name of the camera (as a string) as
the input argument, it creates the object and connects to the camera with
that name. You can use the exact name that is displayed by the webcamlist
function. In the example above it would be 'Logitech Webcam 250'. You
can also use a shortened version of the name, for example, the brand of the
camera. In this case you could simply use 'Logitech' and it would connect to
the Logitech Webcam.

% Use cam as the name of the object. Use 'Logitech' to connect to the Logitech camera.

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

12-9



12 Webcam Support in MATLAB

BacklightCompensation: 1
Contrast: 32

You can see that it created the object and connected to the Logitech Webcam.

When the webcam object is created, it connects to the camera and establishes
exclusive access to the camera and starts streaming data from the camera.
You can then preview the data and acquire images using the snapshot
function, as described in the next section.

Acquiring Webcam Images
Acquiring images from Webcams and bringing them into MATLAB is a simple
process. The general procedure is to make sure your camera is connected,
create a webcam object, preview the image, and acquire snapshots. This
typical workflow is outlined here.

1 See what cameras are connected to your system and make sure MATLAB
can detect them.

webcamlist

ans =

'Logitech Webcam 250'
'Dell Camera C250'

The output is a list of any Webcams that are connected to your system. In
this example, it discovers a built-in Webcam in the Dell computer, and a
connected Logitech Webcam.

12-10



Acquiring Images from Webcams

2 Create a webcam object called cam, using the Logitech camera.

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

3 Preview the image. The size of the preview image is determined by the
value of the resolution property. The preview window shows a live RGB
image from the Webcam. The preview window also displays the camera
name, resolution, frame rate, and the timestamp in seconds. Timestamp is
the elapsed time since the object was created. To preview your image, call
the preview function on the object name, which is cam in this example.

preview(cam)

12-11



12 Webcam Support in MATLAB

The banner of the preview window shows the camera name. The lower
portion of the window shows the timestamp in seconds, resolution, and the
frame rate in frames per second. Timestamp is the elapsed time since
the object was created.

The preview updates dynamically, so if you change a property while
previewing, the image changes to reflect the property change.

12-12



Acquiring Images from Webcams

4 Set any properties that you need to change. For example, you might want
to change the resolution.

First you can see the resolutions your camera supports using the
AvailableResolutions property.

cam.AvailableResolutions

ans =

Columns 1 through 6

'640x480' '160x90' '160x100' '160x120' '176x144' '320x180'

Columns 7 through 11

'320x200' '320x240' '352x288' '640x360' '640x400'

Change the resolution.

set(cam, 'Resolution', '320x240');

For information on which properties you can set for Webcams and how to
set them, see “Setting Properties for Webcam Acquisition” on page 12-17.

5 You can close the preview at any time using the closePreview function.

closePreview(cam)

If you do not explicitly close the preview, it closes when you clear the
webcam object.

6 Acquire a single image from the camera using the snapshot function and
assign it to the variable img.

img = snapshot(cam);

7 Display the acquired image.

imshow(img)

12-13



12 Webcam Support in MATLAB

The imshow function is part of the Image Processing Toolbox™. If you do not
have that product, you can use the image function that is part of MATLAB.

image(img)

8 Clean up by clearing the object.

clear('cam');

Acquiring Webcam Images in a Loop
The snapshot function acquires a single image from a Webcam. If you want
to acquire images in a loop, you can do that with some extra programming.

This example uses MATLAB and Image Processing Toolbox to find circles
in a video stream from a Webcam.

1 Create a webcam object called cam, using a Logitech Webcam.

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

2 Preview the image.

preview(cam)

12-14



Acquiring Images from Webcams

3 Set any properties that you need to change. For example, you might want to
change the brightness, if the camera supports that device-specific property.

set(cam, 'Brightness', 150);

For more information on what properties you can set for Webcams and how
to set the properties, see “Setting Properties for Webcam Acquisition” on
page 12-17.

4 Create the loop and perform processing.

for idx = 1:100
% Acquire a single image.
rgbImage = snapshot(cam);

% Convert RGB to grayscale.
grayImage = rgb2gray(rgbImage);

% Find circles.
[centers, radii] = imfindcircles(grayImage, [60 80]);

% Display the image.
imshow(rgbImage);
hold on;
viscircles(centers, radii);
drawnow

end

5 Clean up by clearing the object.

clear('cam');

12-15



12 Webcam Support in MATLAB

Supported Functions for Webcam
You can use these functions with the MATLAB Webcam feature.

Function Purpose

webcamlist Returns list of Webcams that are connected to your system.

webcamlist

webcam Creates webcam object and connects to the single camera
on your system. If you have multiple cameras and you use
the webcam function with no input argument, it creates the
object and connects it to the first camera it finds.

cam = webcam

For information on how to create the object with an input
argument if you have multiple cameras connected, see
“Creating a Webcam Object” on page 12-6.

preview Preview the images from the Webcam. Use name of object
as input argument, which is cam in this example.
preview(cam)

snapshot Acquire a single image from the Webcam. Use name of
object as input argument, which is cam in this example.

img = snapshot(cam);

closePreview Close the preview window.

closePreview(cam)

set/get Set and get property values. Object name is the first
argument, followed by property/value pairs, which can
be strings or numerics. This example sets the camera’s
resolution to the value shown.

set(cam, 'Resolution', '320x240');

For more information on how to set object- or device-specific
properties for the acquisition and what properties can be
set, see “Setting Properties for Webcam Acquisition” on
page 12-17.

12-16



Setting Properties for Webcam Acquisition

Setting Properties for Webcam Acquisition
You can set object-specific properties for the webcam object to use with any
Webcam. You can also set device-specific properties for your specific Webcam,
if supported by your device. You use the set function to set object-specific
property values for the Webcam object, and either the set function or the dot
notation to set device-specific properties. These two methods are described in
the following two sections.

Note You can set device-specific properties only for Webcams connected
to a Windows system.

Object-Specific Properties

You can use the get and set functions to display property values or set
property values for the Webcam object. The preview window is dynamic, so
if you set a property while previewing your image, you can see the change
take effect.

Set properties after creating the Webcam object and before acquiring images.

To set an object-specific property, use the object name as the first argument,
followed by property-value pairs, which can be strings or numerics. This
example sets the camera resolution to the value shown for the webcam object
cam.

set(cam, 'Resolution', '320x240');

You can use these webcam object-specific properties for any Webcam.

12-17



12 Webcam Support in MATLAB

Object-Specific
Property

Description

Name A read-only property that specifies the camera
name. It is dynamically populated and uses
the name that is shown in the output of the
webcamlist function. For example, 'Logitech
Webcam 250'.

Resolution Specifies the video resolution (width by height) of
the incoming video stream of the current webcam
object. Webcams typically support acquiring
images at multiple resolutions, and you can
change the resolution using this property and
the object name. By default, we will select the
default resolution of the camera. Use this syntax
to change it:

set(cam, 'Resolution', '160x120');

AvailableResolutions Displays the list of all available resolutions
for the selected Webcam. Use object
name:cam.AvailableResolutions

ans =

'320x240'

'160x120'

'80x60'

FrameRate Displays frames per second for the acquisition.

Device-Specific Properties

You can also set device-specific properties that are specific to your Webcam if
your device allows for programmatic access. These properties vary depending
on your device. See the table below for a list of the possible properties for
a UVC compatible Webcam. Your camera may not have all of these. You
can only set properties that your camera allows. See the properties for your
camera by looking at the output when you create the webcam object. For
example, the following shows the available properties for a Logitech Webcam.

12-18



Setting Properties for Webcam Acquisition

cam = webcam('Logitech')

cam =

webcam with properties:

Name: 'Logitech Webcam 250'
Resolution: '640x480'

AvailableResolutions: {1x11 cell}
Exposure: -4

Gain: 253
Saturation: 32

WhiteBalance: 8240
ExposureMode: 'auto'

Sharpness: 48
Brightness: 128

BacklightCompensation: 1
Contrast: 32

Note that device-specific properties can only be set for Webcams connected
to a Windows system.

To set a device-specific property, use the object name and property name
in dot notation as the first argument, and the value you want to set as the
second argument. This example sets the camera brightness to the value
shown for the webcam object cam.

cam.Brightness = 150;

These are the properties that a UVC Webcam can have. Your specific camera
may not have all of these. The camera could also have mode properties, which
are not listed here. See your camera documentation for the list of properties
your device supports.

12-19



12 Webcam Support in MATLAB

Possible Device-Specific
Properties

Description

BacklightCompensation Configures backlight compensation modes to
adjust the camera to capture images dependent
on environmental conditions. Values are on
and off.

Brightness Indicates the brightness level, which adjusts
for the amount of lighting on the image.

Contrast Indicates contrast level, which adjusts for the
difference between brightest and dimmest
areas in the image.

ColorEnable Specifies the color enable setting. Values are
on and off.

Gain Indicates a multiplier for the RGB color values.
The value 0 is normal. Positive values are
brighter and negative values are darker.

Gamma Indicates gamma measurement.

Hue Indicates hue setting, which adjusts the color
tint of the image through the red-yellow-blue
spectrums.

PowerLineFrequency Option for reducing flicker caused by the
frequency of a power line.

Saturation Indicates saturation level, which adjusts the
amount of color in the image.

Sharpness Indicates sharpness level, which adjusts the
clarity of the image.

WhiteBalance Indicates color temperature in degrees Kelvin.

Pan Camera control property for panning, in
degrees.

Tilt Camera control property for tilting, in degrees.

Roll Camera control property for rolling, in degrees.

12-20



Setting Properties for Webcam Acquisition

Possible Device-Specific
Properties

Description

Zoom Camera control property for zooming, in
millimeters.

Exposure Camera control property for specifying
exposure, in log base 2 seconds (1/2^n seconds).

Iris Camera control property for specifying iris
setting, in units of f-stop x 10.

Focus Camera control property for setting focus, as
the distance to the optimally focused target, in
millimeters.

Note Webcam support is available only through a Hardware Support
Package. You must download and install the necessary files using the Support
Package Installer. For instructions, see “Installing the Webcam Support
Package” on page 12-22.

12-21



12 Webcam Support in MATLAB

Installing the Webcam Support Package
You can use the MATLAB Webcam support to bring live images from any
USB Video Class (UVC) Webcam into MATLAB. This includes Webcams that
may be built into laptops or other devices, as well as Webcams that plug into
your computer via a USB port. To use the Webcam feature, you must install
the Webcams Support package.

The Webcam support is available through the Hardware Support Packages.
Using this installation process, you download and install the following file(s)
on your host computer:

• MATLAB files for Webcam support

• An example that shows how to acquire images using a Webcam

Installing the Support Package

1 In MATLAB type:

supportPackageInstaller

to open the Support Package Installer.

You can also open the installer from MATLAB by selecting Home >
Resources > Add-Ons > Get Hardware Support Packages.

2 On the Select an action screen, select Install from Internet and then
click Next. This option is selected by default. Support Package Installer
downloads and installs the support package and third-party software from
the Internet.

12-22



Installing the Webcam Support Package

12-23



12 Webcam Support in MATLAB

3 On the Select support package to install screen, select USB Webcams
from the list.

Accept or change the Installation folder and click Next.

Note You must have write privileges for the Installation folder.

4 If you are prompted to log in to your MathWorks® account, click Log In
to continue.

5 On the MATHWORKS AUXILIARY SOFTWARE LICENSE
AGREEMENT screen, select the I accept check box and click Next.

12-24



Installing the Webcam Support Package

6 On the Confirm installation screen, Support Package Installer confirms
that you are installing the MATLAB Support Package for USB Webcams,
and lists the installation location. Confirm your selection and click Install.

Support Package Installer displays a progress bar while it downloads and
installs the Webcam support package.

7 After the installation is complete you will see a confirmation message on
the Support Package Installer Install/update complete screen. Click
Finish to close the Support Package Installer.

8 If you selected the Show support package examples option
(recommended), the Help displays the example.

9 You will be prompted to restart your computer. You must restart for the
installation to be complete. Click OK and then restart your computer.

12-25


	toc
	File Opening, Loading, and Saving
	Supported File Formats for Import and Export
	Methods for Importing Data
	Tools that Import Multiple File Formats
	Importing Specific File Formats
	Importing Data with Low-Level I/O

	Import Images, Audio, and Video Interactively
	Viewing the Contents of a File
	Specifying Variables
	Renaming or Deselecting Variables
	Importing to a Structure Array

	Generating Reusable MATLAB Code

	Import or Export a Sequence of Files
	View the Contents of a MAT-File
	Load Parts of Variables from MAT-Files
	Load Using the matfile Function
	Load from Variables with Unknown Names
	Avoid Repeated File Access
	Avoid Inadvertently Loading Entire Variables
	Partial Loading Requires Version 7.3 MAT-Files

	Save Parts of Variables to MAT-Files
	Save Using the matfile Function
	Partial Saving Requires Version 7.3 MAT-Files

	Save Structure Fields as Separate Variables
	MAT-File Versions
	Default Version
	Overriding the Default MAT-File Version
	Speeding Up Save and Load Operations

	File Size Increases Unexpectedly When Growing Array
	Loading Variables within a Function
	Create Temporary Files

	Text Files
	Ways to Import Text Files
	Select Text File Data Using Import Tool
	Select Data Interactively
	Import Data from Multiple Text Files

	Import Dates and Times from Text Files
	Import Numeric Data from Text Files
	Import Comma-Separated Data
	Import Delimited Numeric Data

	Import Mixed Text and Numeric Data from Text Files
	Read File with Column Names
	Read File Without Column Names

	Import Large Text File Data in Blocks
	Specify Block Size
	Read Data with Arbitrary Block Sizes
	Import Data from a Nonrectangular Text File
	Write to Delimited Data Files
	Export Numeric Array to ASCII File
	Export Numeric Array to ASCII File Using save
	Export Numeric Array to ASCII File Using dlmwrite

	Export Table to Text File
	Export Cell Array to Text File
	Export Cell Array Using fprintf
	Convert Cell Array to Table for Export

	Write to a Diary File

	Spreadsheets
	Ways to Import Spreadsheets
	Import Data from Spreadsheets
	Paste Data from Clipboard

	Select Spreadsheet Data Using Import Tool
	Select Data Interactively
	Import Data from Multiple Spreadsheets

	Import a Worksheet or Range
	Read Column-Oriented Data into Table
	Read Numeric and Text Data into Arrays
	Get Information about a Spreadsheet

	Import All Worksheets from a File
	Import Numeric Data from All Worksheets
	Import Data and Headers from All Worksheets

	System Requirements for Importing Spreadsheets
	Importing Spreadsheets with Excel for Windows
	Importing Spreadsheets Without Excel for Windows

	When to Convert Dates from Excel Files
	MATLAB and Excel Dates
	Import an Excel File with Numeric Dates
	Export to an Excel File with Numeric Dates

	Export to Excel Spreadsheets
	Write Tabular Data to Spreadsheet File
	Write Numeric and Text Data to Spreadsheet File
	Disable Warning When Adding New Worksheet
	Supported Excel File Formats
	Format Cells in Excel Files


	Low-Level File I/O
	Import Text Data Files with Low-Level I/O
	Overview
	Reading Data in a Formatted Pattern
	Opening the File
	Describing the Data
	Specifying the Number of Values to Read
	Creating Variables in the Workspace

	Reading Data Line-by-Line
	Testing for End of File (EOF)
	Testing for EOF with feof
	Testing for EOF with fgetl and fgets

	Opening Files with Different Character Encodings

	Import Binary Data with Low-Level I/O
	Low-Level Functions for Importing Data
	Reading Binary Data in a File
	Changing the Dimensions of the Array
	Describing the Input Values
	Saving Memory

	Reading Portions of a File
	Testing for End of File
	Moving within a File

	Reading Files Created on Other Systems
	Opening Files with Different Character Encodings

	Export to Text Data Files with Low-Level I/O
	Writing to Text Files
	Opening the File
	Describing the Output
	Additional Formatting Options

	Appending or Overwriting Existing Files
	Example — Append to an Existing Text File
	Example — Overwrite an Existing Text File

	Opening Files with Different Character Encodings

	Export Binary Data with Low-Level I/O
	Low-Level Functions for Exporting Data
	Writing Binary Data to a File
	Overwriting or Appending to an Existing File
	Example — Overwriting Binary Data in an Existing File
	Example — Appending Binary Data to an Existing File

	Creating a File for Use on a Different System
	Opening Files with Different Character Encodings
	Writing and Reading Complex Numbers


	Images
	Importing Images
	Getting Information about Image Files
	Reading Image Data and Metadata from TIFF Files
	Reading Subimages from a TIFF File


	Exporting to Images
	Exporting Image Data and Metadata to TIFF Files
	Creating a New TIFF File
	Writing a Strip or Tile of Image Data
	Modifying TIFF File Metadata (Tags)
	Creating Subdirectories in a TIFF File
	Setting Tag Values



	Scientific Data
	Importing CDF Files
	Overview
	High-Level CDF Import Functions
	Getting Information about the Contents of CDF File
	Reading Data from a CDF File
	Speeding Up Read Operations
	Representing CDF Time Values

	Using the CDF Library Low-Level Functions to Import Data

	Exporting to CDF Files
	Importing NetCDF Files and OPeNDAP Data
	Overview
	Using the MATLAB High-Level NetCDF Functions to Import Data
	Finding All Unlimited Dimensions in a NetCDF File

	Using the MATLAB Low-Level NetCDF Functions to Import Data
	Mapping NetCDF API Syntax to MATLAB Function Syntax
	Exploring the Contents of a NetCDF File
	Reading Data from a NetCDF File

	Troubleshooting OPeNDAP Connections

	Exporting to NetCDF Files
	Overview
	Using the NetCDF High-Level Functions to Export Data
	Creating a New NetCDF File from an Existing File or Template
	Converting Between NetCDF File Formats
	Merging Two NetCDF Files

	Using the NetCDF Low-Level Functions to Export Data
	Exporting (Writing) Data to a NetCDF File


	Importing Flexible Image Transport System (FITS) Files
	Importing HDF5 Files
	Overview
	Using the High-Level HDF5 Functions to Import Data
	Determining the Contents of an HDF5 File
	Importing Data from an HDF5 File
	Mapping HDF5 Datatypes to MATLAB Datatypes

	Using the Low-Level HDF5 Functions to Import Data

	Exporting to HDF5 Files
	Overview
	Using the MATLAB High-Level HDF5 Functions to Export Data
	Writing a Numeric Array to an HDF5 Dataset

	Using the MATLAB Low-Level HDF5 Functions to Export Data
	Mapping HDF5 Function Syntax to MATLAB Function Syntax
	Mapping Between HDF5 Data Types and MATLAB Data Types
	Reporting Data Set Dimensions
	Writing Data to an HDF5 Data Set Using the MATLAB Low-Level Func
	Preserving the Correct Layout of Your Data


	Import HDF4 Files Programatically
	Overview
	Using the MATLAB HDF4 High-Level Functions
	Using hdfinfo to Get Information About an HDF4 File
	Using hdfread to Import Data from an HDF4 File


	Map HDF4 to MATLAB Syntax
	Import HDF4 Files Using Low-Level Functions
	Add Package to Import List
	Open HDF4 File
	Get Information About HDF4 File
	Get Attributes from HDF4 File
	Select Data Sets to Import
	Get Information About Data Set
	Read Entire Data Set
	Read Portion of Data Set
	Close HDF4 Data Set
	Close HDF4 File
	Import HDF4 Files Interactively
	Step 1: Opening an HDF4 File in the HDF Import Tool
	Viewing a File in the HDF Import Tool

	Step 2: Selecting a Data Set in an HDF File
	Step 3: Specifying a Subset of the Data (Optional)
	Step 4: Importing Data and Metadata
	Step 5: Closing HDF Files and the HDF Import Tool
	Using the HDF Import Tool Subsetting Options
	HDF Scientific Data Sets (SD)
	HDF Vdata
	HDF-EOS Grid Data
	Pixels. You can import a subset of the pixels in a Grid data se

	HDF-EOS Point Data
	HDF-EOS Swath Data
	User-Defined. You can optionally also subset a swath data set b

	HDF Raster Image Data


	About HDF4 and HDF-EOS
	Export to HDF4 Files
	Write MATLAB Data to HDF4 File
	Add Package to Import List
	Create HDF4 File
	Create HDF4 Data Set
	Write MATLAB Data to HDF4 File
	Write MATLAB Data to Portion of Data Set
	Write Metadata to HDF4 File
	Close HDF4 Data Set
	Close HDF4 File
	Manage HDF4 Identifiers
	View All Open HDF4 Identifiers
	Close All Open HDF4 Identifiers



	Audio and Video
	Read and Get Information About Audio Files
	Record and Play Audio
	Record Audio
	Record Microphone Input
	Record Two Channels from Different Sound Cards
	Specify the Quality of the Recording

	Play Audio
	Record or Play Audio within a Function

	Get Information about Video Files
	Read Video Files
	Import Video Data from a File
	Display Video Frame with Colormap
	Process Frames of a Video File
	Read Variable Frame Rate Video
	Counting Frames
	Specifying the Frames to Read


	Supported Video File Formats
	What Are Video Files?
	Formats That VideoReader Supports
	View Codec Associated with Video File
	Troubleshooting: Errors Reading Video File

	Convert Between Image Sequences and Video
	Setup
	Construct a VideoReader Object
	Create the Image Sequence
	Read and Sort the Image Sequence into MATLAB®
	Create a New Video with the Image Sequence
	View the Final Video
	Credits
	Export to Audio and Video
	Export to Audio Files
	Export Video to AVI Files

	Characteristics of Audio Files

	XML Documents
	Importing XML Documents
	What Is an XML Document Object Model (DOM)?
	Example — Finding Text in an XML File

	Exporting to XML Documents
	Creating an XML File
	Example — Creating an XML File with xmlwrite

	Updating an Existing XML File


	Memory-Mapping Data Files
	Overview of Memory-Mapping
	What Is Memory-Mapping?
	Benefits of Memory-Mapping
	Faster File Access
	Efficiency
	Efficient Coding Style
	Sharing Memory Between Applications

	When to Use Memory-Mapping
	When Memory-Mapping Is Most Useful
	When the Advantage Is Less Significant

	Maximum Size of a Memory Map
	Byte Ordering

	Map File to Memory
	Create a Simple Memory Map
	Specify Format of Your Mapped Data
	Map Multiple Data Types and Arrays
	Select File to Map

	Read Mapped File
	Read from Memory Mapped as Numeric Array
	Read from Memory Mapped as Nonscalar Structure
	Modify Map Properties and Analyze Data
	Write to Mapped File
	Write to Memory Mapped as Numeric Array
	Write to Memory Mapped as Scalar Structure
	Write to Memory Mapped as Nonscalar Structure
	Syntaxes for Writing to Mapped File
	Work with Copies of Your Mapped Data

	Delete Memory Map
	Ways to Delete a Memory Map
	The Effect of Shared Data Copies On Performance

	Share Memory Between Applications
	The send Function
	The answer Function
	Running the Example

	Internet File Access
	Downloading Web Content and Files
	Example — Using the urlread Function
	Example — Using the urlwrite Function

	Sending Email
	Example — Using the sendmail Function

	Performing FTP File Operations
	Example — Retrieving a File from an FTP Server

	Display Hyperlinks in the Command Window
	Creating Hyperlinks to Web Pages
	Transferring Files Using FTP


	Install and Use Raspberry Pi Hardware
	Install Support for Raspberry Pi Hardware
	Install the Support Package
	Complete Additional Setup Tasks

	Guidelines for Entering Static IP Settings
	Open Interactive Examples
	Connecting to Raspberry Pi Hardware
	Connect to Raspberry Pi Hardware
	Create Connection to One Board
	Create Connection to a Board That Has Different Settings

	Troubleshoot Connecting to Raspberry Pi Hardware
	 Connection Timed Out
	Host Does Not Exist
	Active Connection Already Exists

	Get the IP Address of the Raspberry Pi Hardware
	Hear the Spoken IP Address
	Show the IP Address on a Display

	The Raspberry Pi LED
	Turn the Raspberry Pi LED On and Off
	Flash the Raspberry Pi LED in Response to an Input
	The Raspberry Pi GPIO Pins
	Use the Raspberry Pi GPIO Pins as Digital Inputs and Outputs
	Troubleshoot Raspberry Pi GPIO Pins
	Error Using raspi/writeDigitalPin
	Error Using raspi/readDigitalPin
	Unexpected Digital Pin Number

	The Raspberry Pi Serial Port
	Use the Raspberry Pi Serial Port to Connect to a Device
	Troubleshoot the Raspberry Pi Serial Port
	Missing or Garbled Data

	The Raspberry Pi I2C Interface
	Use the Raspberry Pi I2C Interface to Connect to a Device
	Troubleshoot the Raspberry Pi I2C Interface
	The Raspberry Pi SPI Interface
	Use the Raspberry Pi SPI Interface to Connect to a Device
	The Raspberry Pi Camera Board
	Use the Raspberry Pi Camera Board to Capture Images and Video
	Troubleshoot the Raspberry Pi Camera Board
	The Raspberry Pi Linux Command Interface
	Run Linux Commands on Raspberry Pi Hardware
	Troubleshoot Running Linux Commands on Raspberry Pi Hardware
	Management of Raspberry Pi Files
	Manage Raspberry Pi Files
	Troubleshoot Managing Raspberry Pi Files

	Webcam Support in MATLAB
	Webcam Acquisition Overview
	Webcam Support
	Supported Platforms

	Connecting to Webcams
	Acquiring Images from Webcams
	Creating a Webcam Object
	Acquiring Webcam Images
	Acquiring Webcam Images in a Loop
	Supported Functions for Webcam

	Setting Properties for Webcam Acquisition
	Installing the Webcam Support Package


	tables
	Table 1: Supported TIFF Tags
	Table 2: Valid SampleFormat Values for BitsPerSample Settings
	Table 3: Valid SampleFormat Values for BitsPerSample and Photome
	Table 4: Valid SampleFormat Values for BitsPerSample and Compres
	Table 5: Valid SamplesPerPixel Values for Photometric Settings
	Mapping Between HDF5 Atomic Data Types and MATLAB Data Types
	Mapping Between HDF5 Composite Data Types and MATLAB Data Types


